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Abstract. This study investigates Fisher and Shannon entropies in one- and three-dimensional systems under
the Radial Scalar Power Potential. Using the Nikiforov—Uvarov method combined with the Greene—Aldrich
approximation, we derived energy eigenvalues and normalized wavefunctions. The results demonstrate that
Shannon and Fisher entropies satisfy fundamental quantum information inequalities, including the Bialynicki—
Birula—Mycielski and Stam—Cramér—Rao bounds, across different spatial dimensions. Rényi entropy was also
analyzed in both position and momentum spaces, revealing its dependence on the screening parameter and
highlighting the complementarity in measurement precision between conjugate domains. In particular cases, the
Radial Scalar Power Potential reduces to the Kratzer potential, allowing the computation of energy spectra for
methylidyne (CH) and nitrogen (Nz) molecules. Energy increases with angular momentum, affecting molecular
stability and spectroscopic transitions, while calculated oscillator strengths are in agreement with previous results,
thereby validating the Radial Scalar Power Potential model for applications in both quantum information theory
and molecular spectroscopy.

Keywords: Schrddinger equation, Oscillator strength, Nikiforov-Uvarov method; Diatomic molecules; Entropic
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1. Introduction

Quantum information theory studies the transfer and manipulation of information within quantum
systems by combining principles from quantum mechanics, computer science, and information theory. It
focuses on understanding and controlling how information is stored in quantum states. Among the various
metrics used in this field, Shannon entropy and Fisher information have been widely applied [1, 2], as they
provide a rigorous way to quantify uncertainty in atoms and molecules. Over the years, information-theoretic
measures in quantum systems have attracted significant attention [3], largely due to their applications in
probability density functions and computational analyses, offering deeper insights into the behavior of
guantum mechanical systems. These measures have been applied across diverse areas, including physical and
chemical sciences [4]. The entropic uncertainty relation serves as an alternative formulation to the Heisenberg
uncertainty principle [5]. In both position and momentum spaces, information-theoretic tools have been
extensively employed to study the distribution of quantum states under various potential models [1-5]. In
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guantum mechanics, the Heisenberg uncertainty principle (HUR) [6] was later reformulated in terms of
entropies by Bialynicki-Birula and Mycielski (BBM) [7], extending its application to both position and
momentum spaces. However, Hirschman [8] was the first to introduce an entropic approach to the position-
momentum uncertainty relation, and Beckner [9] provided a formulation equivalent to BBM, highlighting the
crucial role of entropy in capturing the intrinsic uncertainty of quantum systems. This entropic relation is
expressed as:

S(pn1) +S(m) 2 D(1 +Inm) @)

The number of spatial dimensions is denoted by D. This relationship has been shown to surpass the
Heisenberg Uncertainty Relation (HUR) in sophistication, as it can accommodate greater complexity. The
Shannon entropy, a key metric in this framework, is defined as:

5(pnl) = - fRD pnl(rq) npy (Tq)drq (2)

and
SWn) = = foo V(@) Inyn (0)dp ®3)

where S(p,,;) is the position space Shannon entropy, S(y,;) is the momentum space Shannon entropy,
RPrepresent integrating over real space and D is the dimensions which could be 1,2 or 3.

The probability densities (PD) in position and momentum spaces are provided in Equations (4) and (5),
respectively.

o) = [0 4)
and
Yu(®) = [Y(®)I? (5)

P(p) represents the momentum-space wave function, obtained by applying the Fourier transform (FT)
to Y (r,). This concept is related to Shannon entropy and reflects the degree to which a system is localized or
spread out in space [10]. In contrast, Fisher information (FI), a purely local measure, primarily investigates
local variations in the probability density (PD) and is expressed as follows [11]:

Voni(rg)|’

1) = Jp 2L gy, ©
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Fisher information inequality becomes [11]
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The Rényi entropy [12] in coordinate spaces can be expressed as

Ry(pr) = 7= 0(folo (| dry)
) (9)

Rq(¢p) = 1o (Jpold @)1 dp)
(10)
The concept of Rényi entropy introduces an index parameter ¢, which characterizes the sensitivity of a
system to deviations from equilibrium. When g=1, Rényi entropy reduces to Shannon entropy, representing
the equilibrium distribution and reflecting the balance of uncertainty in the system. For g>1, Rényi entropy
decreases, indicating increased knowledge about the system, whereas for g<1, the entropy rises, reflecting
reduced information. The parameter q is always non-negative and lies within the range 0<q<oo [13]. Previous
studies have applied information-theoretic measures to molecular systems. Amadi et al. [14] investigated
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Shannon entropy and Fisher information in three-dimensional molecular systems under the Deng-Fan and
Eckart potentials for diatomic molecules, finding that Shannon entropy exhibited localization, while Fisher
information indicated delocalization in both position and momentum spaces. Both measures satisfied the BBM
and Stam-Cramér—Rao (SCR) inequalities. Similarly, Onyeaju et al. [15] analyzed Shannon and Rényi
entropies in molecular potentials, validating the Heisenberg Uncertainty Principle (HUP) through expectation
values in both position and momentum spaces. Laguna et al. [16] further explored information-theoretic
measures using Gaussian-type functions.

Oscillator strength, which quantifies the probability of an electron transition between energy levels in
atoms or molecules, is critical for understanding spectral line intensities and matter—radiation interactions
[17,18]. For instance, Hibbert [19] described oscillator strength as a measure of electric dipole emission during
electron transitions, using the dipole approximation and selection rules. This measure has been widely applied
in stellar spectroscopy, where atomic transitions involve energy absorption or emission. Studies on oscillator
strengths in different potential models have produced diverse trends. Ikot et al. [20] found that oscillator
strength decreased with increasing potential parameters in the enhanced molecular Manning—Rosen potential,
while Varshni [21] observed a similar decrease under the Hulthén potential. In contrast, Hassanabadi et al. [22]
reported an increase in oscillator strength for the generalized Poschl-Teller potential as potential parameters
were raised. Numerous other studies have examined potential models in quantum systems [23-25].

However, to the best of our knowledge, no previous work has applied the Radial Scalar Power Potential
(RSPP) to investigate Fisher information, Shannon and Rényi entropies, or oscillator strengths in coordinate
spaces. The RSPP provides a valuable framework for analyzing quantum state behavior, calculating
information-theoretic measures, and determining transition probabilities, which are essential for advancing
guantum information theory and understanding oscillator strengths. Accordingly, this study investigates
Shannon, Fisher, and Rényi entropies, oscillator strength, and the energy spectra of methylidyne (CH) and
nitrogen (N2) diatomic molecules within the context of the RSPP.

2. The solutions for the eigenvalues and wavefunctions.

In this study, we employ the Nikiforov-Uvarov (NU) method [26], a systematic technique for solving
second-order differential equations of the hypergeometric form. For a comprehensive derivation and detailed
methodology, refer to Appendix A. When examining a quantum system governed by a defined potential, the
Schrédinger equation (SE) is represented as [27]:

d?Ry(ry)  2u 1(I+1)h? _
# +25 (Enl -V(ry) - 2 )Rnl(rq) =0
(11)
where [ is the angular momentum quantum number, u is the reduced mass , 7 is the particle distance, and

f is the Planck constant.
The RSPP is of the form [28]

V(ry) = aoty + bory® + dy — % + Tk—oz
q q (12)
where ay, by, dy, go,and k are potential strength.

The RSPP has valuable practical and experimental implications in quantum mechanics, atomic physics,
and molecular systems. It offers a more precise model for studying particle interactions in central force fields,
especially in cases where traditional potentials like the Coulomb or harmonic oscillator fall short in capturing
interaction details. Experimentally, this potential helps predict energy spectra and analyze the behavior of
diatomic molecules, quarkonium systems, and nanoscale particles. Its flexibility makes it ideal for fitting
experimental data more accurately, leading to a deeper understanding of complex physical phenomena like the
information theory.

Inserting Eq. (12) into (11) gives

d2Ry . 2p 5 Jdo ko l(+1)A? _
—drq’; + E(Enl — Aoty — boty” —do + Tq T 2urg? Ru(rg) =0, (13)
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Equation (13) cannot be solved exactly with the inserted potential model. The Greene-Aldrich
approximation scheme 7,7% ~ a?(1—e™*4) %1, '~ a(1—e *)~! is employed to address the
centrifugal barrier. This approximation provides a reliable estimate for the centrifugal term and is applicable
within the range specified by a << 1, [29]. The Greene-Aldrich approximation is selected for its simplicity
and effectiveness in solving Schrddinger equation with specific potential forms. However, its limitations arise
in higher-dimensional scenarios due to reduced accuracy in capturing the intricate coupling of angular
momentum and potential terms, which may lead to deviations in energy eigenvalues and wavefunction
behavior. By applying a variable transformation from r; — x4, our new coordinate is expressed in terms of the
parameter x; = e~ %", which enables the simplification of Eq. (13), ultimately leading to Eq. (14).

d*P(xq) 1-xq dyp(xq) 1 ~A(1-x)*-B(1 - xd)3
dxq?  xa(1-xq) dxa  [xa(1-xa)*[—g(1 —x4)2+ C(1 —x4) — D —
where

y]l#(xd) =0, (14)

e = 2uEn;  2udg A= 2pag B = 2ubo C= 21490 D = 2tk y=I1(+ 1)}_ (15)

a?h? azh?’ a*h?’ a3h?’ ah?’ nz "’

Equation (14) contains terms of order x,;3 and x;*. To simplify and obtain an approximate analytical
solution, we neglect these terms by assuming to ar, < 1 [30]. Truncation of higher-order terms simplifies
mathematical models, making them more computationally efficient while retaining physically realistic
outcomes. This approach reduces complexity, enhances interpretability, and enables practical application in
systems where lower-order terms dominate, ensuring accurate predictions without unnecessary computational
overhead, especially in well-defined parameter regimes with minimal influence from higher-order
contributions. Consequently, Eq. (14) reduces to

—(e + 64 + 3B)x,?

d?1(xq) 1-xg  dy(xq) 1 _
trg? T raGoxp g T aGoxP +(2e+4A+3B—-C)xg |YP(xg) =0,
—(e+A+B—-C+D+y) (16)
The comparison of Eq. (16) and Eq. (A1) of Appendix A, the following polynomials are gotten;
(%) =1-%; (%) =% (1=%); o' (¥3)=1-2%,,
o' (x)=-2;0(%)=—(e+6A+3B)x,’
+(26+4A+3B-C)x, —(6+A+B-C+D+y) an

Inserting the polynomials given into Eq. (A9) of Appendix A, gives

T (xg) = =5 /(A = K)xg? + (K + A)xg + As,
where
A1=G+s+6A+yﬂ,A2=—Qawm+33—o,A3=@+A+B—C+D+y)
The NU method stipulates that the discriminant of the quadratic equation must be equal to zero. By using

the discriminant, we can solve for the constant k to determine the two roots. In this particular analysis, we
concentrate on the negative square root, expressed as:

K= _(A2+2A3)_211A3 A3 +A2 +A1 (18)

Xd

We then put Eq. (18) into  (x4) = -5 = \/(Al — K)x4%+ (K + Ay)x; + As, and obtain, m(x;)has
the most suitable expression given as

m(xg) = —xz—d - [(\/A_3 + A3+ A, + Al)xd — \/A—3], (19)
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Using the polynomials and Eq. (17). Therefore, we obtain 7(x;) and 7/ (x,) as follows:

T(Xd) =1- Zxd - 2,/A3xd -2 A3 + AZ + Alxd + 21/14 , (20)
T/ (xq) = —2[1+ /A3 + JAs + 4, + 4], (21)

Referring to Eq. (A10) and Eq. (A1l) of Appendix A, the following expressions for A,, and A are as
follows:

Ap =1+ [1+2\/A3+2/A;+ A, + A |n,(n=10,1,2,...),

1
A= —=— Ay — A5 + Ay + A — (A + 245) — 2,[A3\[A; + A, + Ay, -

The eigenvalues of the RSPP is obtained by equating Egs. (22) and (23) and incorporating Eq. (15)

— 2_2
1\2 6uagp
n+ie (l+5) +a4'h2
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2u 8u (l _) +6Ka0
n4=+ atn?

2 2ub0+2uk0
a3h?

(22)

(24)

The derivation of energy eigenvalues in Eq. (24) follows a precise and methodical approach,
incorporating standard approximation techniques and ensuring mathematical rigor. It systematically applies
boundary conditions, and potential terms, yielding results that align with established theory. The derivation
effectively captures essential physical behavior while maintaining mathematical consistency.

The wave function (WF) for the ground state and the first excited state, along with their normalization
constants, are presented in Egs. (25) and (26).

al [2(1+4+B)] —aly 4 —aly p4l
r —_— x(1- 25
Yo (1,) = /Fpﬂrp”m (e A x (e (25)

A
—al —al 1 -al
oy ( ) 24G+24+2B)a | [ arasm) [ %lg ) (1= “layss Pl(ZA'ZB) 1-2¢ ") (26)
G+28) I [2+24] ] [2+2B]

where

N | =

2
A= fIX U+ D) = 2 (B =)~ 2 B= L+

P1and I' are Jacobi and Gamma functions respectively
The wave function in momentum space is expressed as

1 I'[2aa+4+B —af —ar L iy
Woo(p) = \/; %’[ (e Dix(1—-e HFY2e "¢ r -
0
Cra+aes) . D+ T [a+2)
Y = £ x 2 o | N
00(P) ['241T" [2+2B]  vzmal [2+A+B+%] (28)

The eigenfunction corresponding to the SE in spherical polar coordinates is expressed as:
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Rn,(l’ )

wnlm<rq,erq,¢r)= : ylm(e b, ). (29)
q

q q

The spherical harmonics Y;,,, (6, ¢) is defined by

l l ! i
Fin(6,6) = (~1) |22 pin o ) pime (30)

where the function P;"(Cos®) is the associated Legendre function.
The wave function in momentum space is represented by the Fourier transform [31].

1 == 3
Lpnlm(p: Hp: ¢p) = WIR:)’ Lpnlm ( rq f 6 r, f ¢ r, ) e~ pT d rq (31)

3 2 _in T
The notationd 7, = ( r, dr, ) sinfd0d¢ is the volume element. The plane-wave expansion for e P
is given as

-ip. I ]l+1/z<p rq )

e | =¥ ERe T i Yim (8, &) Yiim (9 rq,qbrq) [32] (32)
rl
Given the axial symmetry, only the m = 0 terms remain, which simplifies the plane-wave expansion
significantly.

—ip.T

2 /2 - . l]l+1/2(Prq> .
e R — (ZTL’) / Ylm(Hp, ¢P) Zl=0 |7 — YlO (9 r, B (p r, ) (33)
rl
Substituting equations (30) and (33) into equation (32) yields
- 2 * .
Wi (P, 6p, Pp) = i Yim (6, bp) f: ls Yoo (9 r’ ¢ r, ) Yio (0 ' ¢ r ) sinfdfd¢
o Bl Ig ) Jivasz 2 ¥, 2
el o).

0 g drg (34)

rq p rq

For the ground state, the orthonormality condition of the spherical harmonics is applied to simplify the
analysis.

lIJ000(17' gp' ¢p) = WFOO(I?) (35)
where,
Foo(p) = f \/7R00 ]1/2 pr )drq (36)

The momentum space wave function is obtained using MATHEMATICA software, as given by:

(/e ET 2yp oL l2Orare) il | il e )
2 I"2a1 I (24287 T B+a+B-B) I Z+a+n+2)

quoo(P; 9p!¢p) = pVZna = Yoo(gp: ¢p) (37)

2.1 Oscillator Strength

Oscillator strength is a dimensionless quantity that represents the probability of a system, like an atom or
molecule, absorbing or emitting electromagnetic radiation. It represents the intensity of transitions between
energy states, with higher values corresponding to more significant transitions. This parameter is crucial for
analyzing spectra and atomic/molecular interactions. The expression is given by:
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£l =220 (B — B wjlriyy|’ (38)

where E; and 1) ;are at a higher state than the respective E; and ;. The M represents an electronic mass.
The notation |(y;|r(y;)| is the matrix element and (E; — E; )is the energy difference [19].

2.2. Expectation values and the Heisenberg Uncertainty principle
The expression for the expectation value (EV) of r, ,rq2 , and p2are as follows [1].

(ry )n = fooo RpetgR e dry (39)
(r®),, = Iy Rnery* Rredlry (40)

N [e'e) N (%) daz *
P*)n = fo Rn#sz.n{’drq = - fo Rnl(r)d_n?Rn.l (r)dr (41)

The uncertainties in both position and momentum are evaluated using Equations (42) and (43) [1].

A ’(rq ) - (rq)z (42)

(p?) — (p)? (43)
The expectation value and its associated uncertainties will be evaluated using Wolfram Mathematica 13.

3. Case Study: Diatomic Molecules

Formed through the covalent bonding of two atoms, diatomic molecules are fundamental to numerous
physical and chemical phenomena. Their importance spans diverse fields, from atmospheric chemistry to
molecular spectroscopy and guantum mechanical modeling. Recent studies [2,24-26,33] have significantly
enriched our understanding of their intrinsic properties, providing advanced theoretical models and
experimental data that offer deeper insights into their structure, dynamics, and interactions. The potential
utilized in our study enables the investigation of diatomic molecules by setting g, = 2D,7,, ko = D12, a4 =
by, = dy = 0 of Eq. (12), we have the Kratzer potential and the energy equation is given as Eq.(44), when a =
0. The Kratzer potential has emerged as a key model in atomic and molecular physics, particularly in the study
of vibrational and rotational spectroscopy [34]. Its relevance in molecular physics is both substantial and
widely acknowledged.

2 2
Eny = — 22 D77 [n+ +\/(l+%) +—2““h‘:"’reJ

-2

(44)
4. Results and Discussion

The NU method was employed to derive the energy spectrum of the Schrddinger equation under the
RSPP, retaining terms up to the second order. This approximation ensures accuracy in position space, which
is critical because information-theoretic measures such as Fisher information, Shannon entropy, and Rényi
entropy are highly sensitive to the precision of the underlying wavefunctions. Fisher information, which
characterizes the localization or sharpness of a probability distribution, responds strongly to even minor
variations in eigenvalues. Similarly, Shannon and Rényi entropies, which quantify the uncertainty and spread
of quantum states, are directly influenced by the accuracy of the eigenfunctions and their corresponding
spectra. Consequently, enhancing the precision of eigenvalue approximations significantly improves the
reliability and fidelity of these entropy-based analyses in both coordinate and momentum representations,
offering deeper insights into the fundamental behavior of quantum systems. Table 1 reports the one-
dimensional ground-state Shannon entropy for various values of the screening parameter a. As o increases,
entropy in position space rises, while it decreases in momentum space, illustrating the trade-off between
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precision in conjugate variables and confirming compliance with the BBM inequality. A similar pattern is
observed in Table 2, which presents the three-dimensional ground-state Shannon entropy over the range
a=0.01to 0.09. In all cases, the total entropy exceeds the BBM bound of 6.4343, reaffirming the fundamental
guantum constraint on simultaneous measurements of position and momentum.

Table 1. Numerical Values of Position and Momentum Shannon Entropies for the One-Dimensional Ground State
using parameters ag, = 1.9,b, = 1.7,dy = 1.8,go = 1.1,k; = 0.02,u =1, =1

a S(p) S(y) S(p) +S(y) = 2.14473

0.01 2.014582633 0.130538251 2.145120884
0.02 2.017227462 0.129000744 2.146228206
0.03 2.016882987 0.12872739 2.145610377
0.04 2.024335028 0.121969552 2.14630458

0.05 2.038506689 0.108715548 2.147222237
0.06 2.061039402 0.087358576 2.148397978
0.07 2.093779221 0.05611188 2.149891102
0.08 2.138926224 0.012875116 2.15180134

0.09 2.199166310 -0.044868907 2.154297403

Table 2. Numerical Values of Position and Momentum Shannon Entropies for the three-dimensional Ground State
using parameters ay, = 1.9,by = 1.7,dy = 1.8, = 1.1,k = 0.02,u =1,A =1

a S(p) S(y) S(p) + S(y) = 6.4342
0.01 2.356488661 4.210105084 6.566593745
0.02 0.127911327 6.438681244 6.566592571
0.03 -1.136590993 7.703183368 6.566592375
0.04 -2.023404187 6.058972249 4.035568062
0.05 -2.707005078 9.273597358 6.566592279
0.06 -3.263379488 9.829971751 6.566592263
0.07 -3.732534727 10.29912698 6.566592253
0.08 -4.138146485 10.70473873 6.566592247
0.09 -4.495392354 11.06198460 6.566592243

Table 3 displays the one-dimensional ground-state Fisher information for various values of a. As
expected, the product of Fisher information in position and momentum spaces satisfies the SCR inequality.
Increasing o enhances position-space Fisher information reflecting improved localization while reducing
momentum-space information, demonstrating the intrinsic limits imposed by the uncertainty principle.

Table 3. Numerical Values of Position and Momentum Fisher Information for the One-Dimensional Ground State
using parameters ay, = 1.9,b, = 1.7,dy = 1.8,go = 1.1k, = 0.02,u =1, A =1

a I(p) 1(y) IPIy) =4
0.01 0.30313370 13.19549806 4.000000150
0.02 0.30406752 13.1550108 4.000011510
0.03 0.302969164 13.20285708 4.000058572
0.04 0.298904296 13.38283435 4.000186677
0.05 0.291090195 13.74304620 4.000466004
0.06 0.278928026 14.34422399 4.001006078
0.07 0.262046936 15.27201902 4.001985792
0.08 0.240366064 16.65674436 4.003716087
0.09 0.214192951 18.70638388 4.006775559

This inverse relationship persists in three dimensions, as shown in Table 4. As a increases, position-space
Fisher information becomes more pronounced, indicating sharper localization, whereas momentum-space
information decreases. These trends not only comply with the SCR inequality but also highlight how o
influences the fundamental trade-off between precision in conjugate observables.
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Table 5 presents numerically computed Rényi entropies for the index parameter q=0.5. The data show
that increasing o leads to higher entropy in both coordinate and momentum spaces, emphasizing the role of
screening in enhancing the system’s overall uncertainty.

Table 4. Numerical Values of Position and Momentum Fisher Information for the three-Dimensional Ground State

using parameters aq,= 1.9,by =1.7,dy = 18,99 = 1.1,k; =0.02,u =1, =1

a 1(p) 1(y) 1(p)I(y) = 36
0.01 13.1768 3.642751741 47.99981114
0.02 58.2168 0.824488281 47.99906934
0.03 135.2568 0.354872211 47.99887971
0.04 244.2968 0.196477482 47.99882003
0.05 385.3368 0.124563430 47.99887357
0.06 558.3768 0.085961509 47.99891224
0.07 763.4168 0.062873883 47.99897888
0.08 1000.4568 0.047977061 47.99897643
0.09 1269.4968 0.037809514 47.99905749

Table 5. Numerical Values of Position and
1.7,dy = 18,90 = 1.1,ky = 0.02,u = 1,A =1

Momentum Renyi information using parameters a,, = 1.9,b, =

a Ros(p) R3(y) Ros(p) + R3(y) = 2.057915
0.01 2.017227462 -0.096433416 2.057944483

0.02 2.014582633 -0.095156679 2.058045411

0.03 2.016882987 -0.097403422 2.058208962

0.04 2.024335028 -0.104780595 2.058441418

0.05 2.038506689 -0.118856345 2.058749655

0.06 2.061039402 -0.141272364 2.059146266

0.07 2.093779221 -0.173875004 2.05965288

0.08 2.138926224 -0.218864514 2.060306226

0.09 2.19916631 -0.278926653 2.061169497

Furthermore, as the index q increases, Rényi entropy also rises, confirming its sensitivity to the shape of
the underlying probability distribution. This behavior supports the use of Rényi entropy as a generalized
measure for exploring quantum delocalization, coherence, and complexity. In Table 6, the expectation values
(r), (r?), and (p?) are reported for the ground state. These values provide additional insight into the average
behavior of quantum observables and reinforce the Heisenberg Uncertainty Principle by illustrating the

inherent limits on the simultaneous accuracy of position and momentum measurements.

Table. 6: Numerical Values of Expectation values and Heisenberg uncertainty using parameters a,, = 1.9,b, =
1.7,dg = 18,90 = 1.1, kg = 0.02,u = 1,A=1

a (r) (r?) (p?) Ardp = 0.5
0.01 194.1635691 37702.79139 0.075783437 0.500073000
0.02 97.02067465 9416.303916 0.076016882 0.500293610
0.03 64.82897404 4206.10529 0.075742291 0.500662210
0.04 48.93699129 2398.190572 0.074726074 0.501186938
0.05 39.6153286 1572.835561 0.072772549 0.501884149
0.06 33.62556095 1134.303532 0.069732006 0.502783536
0.07 29.58801336 879.3269599 0.065511734 0.503935848
0.08 26.82459241 723.8098833 0.060091516 0.505427125
0.09 24.97346852 628.4821408 0.053548238 0.507405668

Table 7 shows that, as a increases, oscillator strengths decrease. This decline reflects reduced interaction
between the electric field and electronic states, leading to lower transition probabilities. These trends are
consistent with previous studies using other potential models, highlighting the robustness of the observed

behavior.
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Table. 7: Numerical Values of Oscillator Strength for the Radial Scalar Power Potential, using parameters a,, =
_Zo,bo = 3,d0 = 4‘.8,g0 = Z,ko = 1,‘u. = 1,h = 1

Transition a fiﬂ'

1s-2p 0.0250 150.7654321
0.0500 149.8765432
0.0750 148.9876543
0.1000 148.0987654
0.1500 147.2098765

1s—3p 0.0250 2900.123456
0.0500 1450.234567
0.0750 950.3456789
0.1000 710.4567890
0.1500 460.5678901

By imposing specific boundary conditions, the RSPP was reduced to the Kratzer potential, facilitating an
accurate analytical treatment. Table 8§ summarizes the spectroscopic parameters for CH and N2 molecules,
chosen for their relevance in previous studies and practical applications. Using these parameters in Eq. (44),
energy eigenvalues were computed and are presented in Table 9.

Table 8. Spectroscopic properties of the chosen diatomic molecules [35].

Molecules D.(eV) 1.(4) u(amu)
CH 31838.081490 1.1198 0.929931
Ny 11.938193820 1.0940 7.003350

Table 9: Comparison of bound-state energy (in eV) for different £ quantum numbers across various diatomic
molecules while keeping n constant.

n | CH CH [40] N2 N, [40]
0 0 0.083223 0.08322383 0.054436 0.05443655
1 0 0.241150 0.24115051 0.162076 0.16207644
1 0.244408 0.24440882 0.162565 0.16256502
2 0 0.389589 0.38958988 0.268260 0.26826045
1 0.392654 0.39265445 0.268742 0.26874244
2 0.398767 0.39876758 0.269706 0.26970629
3 0 0.529286 0.52928690 0.373014 0.37301474
1 0.532172 0.53217281 0.373490 0.37349025
2 0.537929 0.53792974 0.374441 0.37444116
3 0.546528 0.54652818 0.375867 0.37586721
4 0 0.660914 0.66091486 0.476364 0.47636485
1 0.663635 0.66363571 0.476834 0.47683401
2 0.669063 0.66906360 0.477772 0.47777219
3 0.677171 0.67717107 0.479179 0.47917917
4 0.687917 0.68791738 0.481054 0.48105461
5 0 0.785083 0.78508342 0.578335 0.57833578
1 0.787651 0.78765158 0.578798 0.57879869
2 0.792775 0.79277502 0.579724 0.57972438
3 0.800428 0.80042821 0.581112 0.58111263
4 0.810573 0.81057320 0.582963 0.58296310
5 0.823160 0.82316019 0.585275 0.58527534

The results show strong agreement with alternative analytical methods [35]. For a fixed principal quantum
number n, increasing the angular momentum quantum number £ leads to higher energy levels, reflecting the
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centrifugal contribution to the effective potential and its implications for molecular stability and spectroscopic
behavior. Beyond the Kratzer limit, the full RSPP model reveals deeper physical trends. The results show that
the screening parameter directly affects the spatial confinement of the system. Stronger screening leads to more
localized wavefunctions, larger energy spacings, and reduced overlap between states, which lowers oscillator
strengths and reduces transition probabilities. These changes are reflected in information-theoretic measures
as well, with Fisher information increasing in position space and Shannon and Rényi entropies capturing the
redistribution of uncertainty between conjugate variables. These results demonstrate that the potential shape
influences measurable spectroscopic properties and the quantum information content of the states, highlighting
the practical significance of our findings for understanding and predicting transition behaviors in the system.

Figures 1(a) and 1(b) illustrate wavefunction profiles and corresponding probability densities for {=1. As
n increases, wavefunctions become more oscillatory, with higher amplitudes and additional nodes, indicating
the emergence of distinct quantum states. The associated probability densities display Gaussian-like peaks,
supporting the quantized nature of the system and confirming compliance with the BBM inequality. Figures
2(a) and 2(b) extend this analysis to {=2, further confirming the influence of the potential on wavefunction
structure and spatial localization.
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Fig.1. (a) Radial wave functions and (b) corresponding probability density functions for various principal quantum
numbers n, at [ =1
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Fig. 2. (a) Radial wave functions and (b) corresponding probability density functions for various principal quantum
numbers, at [ =2

Figures 3(a) and 3(b) show the variation of Shannon entropy with respect to a. An increase in o leads to
a decline in position-space entropy and a corresponding rise in momentum-space entropy, reinforcing the
uncertainty principle.
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Fig 3. (a, b): Variations of Shannon entropies with a parameter

Figures 4(a) and 4(b) depict Fisher information under the same variation. As o increases, Fisher

information in position space rises, signifying enhanced sensitivity to parameter changes, while it declines in
momentum space, reflecting decreased sensitivity in that domain. Finally, Figures 5(a) and 5(b) illustrate Rényi
entropy trends with respect to a. As o increases, Rényi entropy decreases in momentum space while increasing
in position space. This duality highlights the system’s evolving structure and localization as a function of the
screening parameter.
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Fig. 5. (a, b): Variations of Renyi entropy with a parameter

These complementary behaviors in position and momentum representations are in full agreement with

the uncertainty principle, illustrating the balance between information content in conjugate domains. This
integrated analysis not only reinforces the foundational constraints of quantum mechanics but also enhances
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our understanding of how information is distributed between conjugate variables, providing valuable insights
for quantum measurement, coherence, and the design of quantum technologies.

5. Conclusions

In this study, the Schrodinger equation for the Radial Scalar Power Potential (RSPP) was solved
analytically using the NU method, applying the Greene—Aldrich approximation and an appropriate coordinate
transformation. This allowed us to obtain energy eigenvalues and normalized wavefunctions, which were then
used to compute expectation values, Shannon entropy, Fisher information, Rényi entropy, and oscillator
strengths in both position and momentum spaces.

Our results confirm that Shannon entropy and Fisher information satisfy the BBM and SCR inequalities
in one- and three-dimensional cases, reaffirming the quantum mechanical limits on the simultaneous precision
of conjugate observables. Wavefunction and probability density analyses for {=1 and £=2 demonstrate an
inverse behavior of Fisher information: increases in one space correspond to decreases in the other, reflecting
the uncertainty equilibrium inherent in quantum systems.

By imposing specific boundary conditions, the RSPP reduces to the Kratzer potential, enabling accurate
computation of energy eigenvalues for methylidyne (CH) and nitrogen (N2) molecules. Energy levels rise with
increasing angular momentum quantum number, highlighting the centrifugal contribution to the effective
potential and its relevance for molecular stability and spectroscopic transitions. Additionally, oscillator
strengths decrease with higher screening parameters, indicating reduced electron—field interaction and lower
transition probabilities, in agreement with prior studies. These findings provide a clear physical interpretation
of the relationships between potential parameters, wavefunction localization, and information-theoretic
measures. They emphasize the connection between guantum uncertainty and measurable quantities, such as
transition energies and oscillator strengths. The results have practical implications for molecular spectroscopy,
modeling of diatomic systems, and the design of quantum sensors, offering a framework for further exploration
in quantum information theory and related technological applications.

Conflict of interest statement
The authors declare that they have no conflict of interest in relation to this research, whether financial, personal,
authorship or otherwise, that could affect the research and its results presented in this paper.

CRediT author statement

Inyang E.P.: Conceptualization, Methodology, Writing-Original draft preparation, Funding acquisition; Nwachukwu I. M.
Software Funding acquisition; Okoi P.O.: Visualization, Validation, Funding acquisition. The final manuscript was read and
approved by all authors.

Funding
This research was supported by the 2025 Senate Research Grant from the National Open University of Nigeria: with
grant number NOUN/DRA/SRG/AW/035.

Acknowledgements
The authors, expresses appreciation to the National Open University of Nigeria for the 2025 Senate Research Grant.

References

1  Inyang E.P., Omugbe E., Abu-shady M., William E.S. (2023) Investigation of quantum information theory
with the screened modified Kratzer and a class of Yukawa potential model. Eur Phys J Plus, 138 (11), 969.
https://doi.org/10.1140/epjp/s13360-023-04617-7

2 Inyang E. P. (2025) Quantum expectation values and Shannon entropy in diatomic molecular systems. Journal
of Mathematical Chemistry. https://doi.org/10.1007/s10910-025-01738-5

3 Inyang E.P., Aouami A.E.L., Ali N., Endut R., Ali N.R., Aljunid S.A. (2024) Information entropies with
Varshni-Hellmann potential in higher dimensions. Phys Open, 100220. https://doi.org/10.1016/j.phys0.2024.100220

4  Dong S., Sun G.H., Dong S.H., Draayer J.P. (2014) Quantum information entropies for a squared tangent
potential well. Phys Lett A, 378(3), 124-130. https://doi.org/10.1016/j.physleta.2013.11.020

5  Pooja, Kumar R., Kumar G., Kumar R., Kumar A. (2016) Quantum information entropy of Eckart potential.
Int J Quantum Chem, 116(19), 1413-1418. https://doi.org/10.1002/qua.25197



https://doi.org/10.1140/epjp/s13360-023-04617-7
https://doi.org/10.1007/s10910-025-01738-5
https://doi.org/10.1016/j.physo.2024.100220
https://doi.org/10.1016/j.physleta.2013.11.020
https://doi.org/10.1002/qua.25197

114 Eurasian Physical Technical Journal, 2025, 22, 4(54) ISSN 1811-1165; e-ISSN 2413-2179

6  Heisenberg W. (1927) Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z
Phys, 43, 172-198. https://doi.org/10.1007/BF01397280

7  Biatynicki-Birula I., Mycielski J. (1975) Uncertainty relations for information entropy in wave mechanics.
Commun Math Phys, 44, 129-132. https://doi.org/10.1007/BF01608825

8  Hirschman L.I. (1957) A note on entropy. Am J Math, 79(1), 152-156. https://doi.org/10.2307/2372390

9 Beckner W. (1975) Inequalities in  Fourier  analysis. Ann  Math, 102(1):159-182.
https://doi.org/10.2307/1970980

10 Esquivel Olea R.O., Molina Espiritu M., Lépez Rosa S. (2023) 3D information-theoretic analysis of the
simplest hydrogen abstraction reaction. J Phys Chem A,127(30), 6159-6174. https://doi.org/10.1021/acs.jpca.3c01957

11  Omugbe E., Osafile O.E., Okon I.B., Eyube E.S., Inyang E.P., Okorie U.S., Onate C.A. (2022) Non-relativistic
bound state solutions with a-deformed Kratzer-type potential using the supersymmetric WKB method: Application to
theoretic-information measures. Eur Phys J D, 76(4), 72. https://doi.org/10.1140/epjd/s10053-022-00395-6

12 Rényi A. (1960) On measures of information theory. In: Neyman J., ed. Proc 4th Berkeley Symp Math Stat
Probab, I, 547-561. Berkeley, CA: Berkeley Univ. Press.

13 Njoku LJ., Onyenegecha C.P. (2024) Global and local information-theoretic measures of the inversely
quadratic Hellmann—Kratzer potential. Chin J Phys, 88, 594-608. https://doi.org/10.1016/j.cjph.2023.10.014

14  Amadi P.O., Ikot A.N., Rampho G.J., Okorie U.S., Abdullah H.Y., Liitfiioglu B.C. (2020) Information
entropies for H. and ScF diatomic molecules with Deng-Fan-Eckart potential. Rev Mex Fis; 66(6), 742-748.
https://doi.org/10.31349/revmexfis.66.742

15 Onyeaju M.C., Omugbe E., Onate C.A., Okon I.B., Eyube E.S., Okorie U.S., et al. (2023) Information theory
and thermodynamic properties of diatomic molecules using molecular potential. J Mol Model, 29(10), 311.
https://doi.org/10.1007/s00894-023-05708-z

16 Laguna H.G., Salazar S.J., Sagar R.P. (2022) Information theoretical statistical discrimination measures for
electronic densities. J Math Chem, 60(7), 1422—1444. https://doi.org/10.1007/s10910-022-01363-6

17 Njoku L.J., Onyeocha E., Onyenegecha C.P., Onuoha M., Egeonu E.K., Nwaokafor P. (2023) Quantum
information of the modified Mobius squared plus Eckart potential. Int J Quantum Chem, 123(6),
€27050. https://doi.org/10.1002/qua.27050

18 Estafién C.R., Montgomery H.E. Jr, Angulo J.C., Aquino N. (2024) The confined helium atom: An
information—theoretic approach. Int J Quantum Chem, 124(4), e27358. https://doi.org/10.1002/qua.27358

19 Hibbert A. (1975) Developments in atomic structure calculations. Rep Prog Phys, 38(11), 1217.
https://doi.org/10.1088/0034-4885/38/11/001

20 Ikot A.N., Hassanabadi H., Obong H.P., Umoren Y.C., Isonguyo C.N., Yazarloo B.H. (2014) Approximate
solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM. Chin
Phys B, 23(12), 120303. https://doi.org/10.1088/1674-1056/23/12/120303

21 Varshni Y.P. (1990) Eigenenergies and oscillator strengths for the Hulthén potential. Phys Rev A, 41(9), 4682.
https://doi.org/10.1103/PhysRevA.41.4682

22 Hassanabadi H., Hoda Y.B., Lu L.L. (2012) Approximate analytical solutions to the generalized Pdschl-Teller
potential in D dimensions. Chin Phys Lett, 29(2), 020303. https://doi.org/10.1088/0256-307X/29/2/020303

23 Inyang E. P., Nwachukwu I. M., Ekechukwu C.C., Ali N., Lawal K.M. (2025) Variance-based approach to
quantum information measures and energy spectra of selected diatomic molecules. Journal of the Korean Physical
Society. https://doi.org/10.1007/s40042-025-01483-7

24 Inyang E.P., Obisung E.O., Amajama J., Bassey D.E., William E.S., Okon I.B. (2022) The effect of topological
defect on the mass spectra of heavy and heavy-light quarkonia. Eurasian Phys Tech J, 19(4), 78-87.
https://doi.org/10.31489/2022No04/78-87

25 Inyang E.P., Nwachukwu I.M., Ekechukwu C.C., Ekong I.B., William E.S., Lawal K.M., et al. (2024)
Analytical solution of the class of inversely quadratic Yukawa potential with application to quantum mechanical systems.
Eurasian Phys Tech J, 21(4), 118-130. https://doi.org/10.31489/2024N04/118-130

26  Nikiforov S.K., Uvarov V.B. (1988) Special functions of Mathematical Physics, Birkhauser, Basel. Available
at: https://link.springer.com/book/10.1007/978-1-4757-1595-8

27 William E.S., Inyang E.P., Thompson E.A. (2020) Arbitrary I-solutions of the Schrddinger equation
interacting with Hulthén—Hellmann potential model. Rev Mex Fis, 66(6), 730-741.
https://doi.org/10.31349/RevMexFis.66.730

28 Inyang E.P., Ali N., Endut R., Rusli N., Aljunid S.A. (2024) The radial scalar power potential and its
application to quarkonium systems. Indian J Phys, 1-10. https://doi.org/10.1007/s12648-024-03335-9

29 Greene R.L., Aldrich C. (1976) Variational wave functions for a screened Coulomb potential. Phys Rev A,
14(6), 2363. https://doi.org/10.1103/PhysRevA.14.2363

30 TasA., Aydogdu O., Salti M. (2017) Relativistic spinless particles with position dependent mass: Bound states
and scattering phase shifts. J Korean Phys Soc, 70(10), 896-904. https://doi.org/10.3938/jkps.70.896

31 Kota V.K.B. (2014) Embedded random matrix ensembles in quantum physics. Vol. 3, Heidelberg: Springer.



https://doi.org/10.1007/BF01397280
https://doi.org/10.1007/BF01608825
https://doi.org/10.2307/2372390
https://doi.org/10.2307/1970980
https://doi.org/10.1021/acs.jpca.3c01957
https://doi.org/10.1140/epjd/s10053-022-00395-6
https://doi.org/10.1016/j.cjph.2023.10.014
https://doi.org/10.31349/revmexfis.66.742
https://doi.org/10.1007/s00894-023-05708-z
https://doi.org/10.1007/s10910-022-01363-6
https://doi.org/10.1002/qua.27050
https://doi.org/10.1002/qua.27358
https://doi.org/10.1088/0034-4885/38/11/001
https://doi.org/10.1088/1674-1056/23/12/120303
https://doi.org/10.1103/PhysRevA.41.4682
https://doi.org/10.1088/0256-307X/29/2/020303
https://doi.org/10.1007/s40042-025-01483-7
https://doi.org/10.31489/2022No4/78-87
https://link.springer.com/book/10.1007/978-1-4757-1595-8
https://doi.org/10.31349/RevMexFis.66.730
https://doi.org/10.1007/s12648-024-03335-9
https://doi.org/10.1103/PhysRevA.14.2363
https://doi.org/10.3938/jkps.70.896

Eurasian Physical Technical Journal, 2025, 22, 4(54) Physics and Astronomy 115

32 Inyang E.P., William E.S., Obu J.O., Ita B.1., Inyang E.P., Akpan 1.0. (2021) Energy spectra and expectation
values of selected diatomic molecules through the solutions of Klein—Gordon equation with Eckart—Hellmann potential
model. Mol Phys, 119(23), €1956615. https://doi.org/10.1080/00268976.2021.1956615

33 Inyang E.P., Ali N.R., Aljunid S.A. (2024) Energy spectra, expectation values, and thermodynamic properties
of HCl and LiH diatomic molecules. Eurasian Phys Tech J; 21, 124-137. https://doi.org/10.31489/2024N01/124-137

34 Inyang E.P., Ntibi J.E., Obisung E.O., William E.S., Ibekwe E.E., Akpan I.0., Inyang E.P. (2022) Expectation
values and energy spectra of the Varshni potential in arbitrary dimensions. Jordan J Phys, 15(5), 509.
https://doi.org/10.47011/15.5.7

35 Rani R., Bhardwaj S.B., Chand F. (2018) Bound state solutions to the Schrodinger equation for some diatomic
molecules. Pramana J Phys, 91, 46. https://doi.org/10.1007/s12043-018-1622-1

AUTHORS’ INFORMATION

Inyang, Etido Patrick — Dr. (Sci.), Department of Physics, Faculty of Science, National Open University of Nigeria, Abuja,
Nigeria; ORCID iD: 0000-0002-5031-3297; etidophysics@gmail.com

Okoi, Peter Obeten - Mr. (Sci.), Department of Physics, Faculty of Physical Science, University of Calabar, Calabar,
Nigeria; ORCID iD: 0000-0001-9147-425X; okoipeter7 @gmail.com

Nwachukwu, Iheke Michael - Dr. (Sci.), Department of Physics, Faculty of Science, National Open University of Nigeria,
Abuja, Nigeria; ORCID iD: 0000-0003-2237-7805; inwachukwu@noun.edu.ng



https://doi.org/10.1080/00268976.2021.1956615
https://doi.org/10.31489/2024No1/124-137
https://doi.org/10.47011/15.5.7
https://doi.org/10.1007/s12043-018-1622-1
mailto:etidophysics@gmail.com
mailto:okoipeter7@gmail.com
mailto:inwachukwu@noun.edu.ng

116 Eurasian Physical Technical Journal, 2025, 22, 4(54) ISSN 1811-1165; e-ISSN 2413-2179

APPENDIX A: Review of Nikiforov-Uvarov (NU) method

The NU method was proposed by Nikiforov and Uvarov [31] to transform Schrddinger-like equations into a second-order
differential equation via a coordinate transformation S = S(r) , of the form

#(s) (s)+ ;((SS))W(S)ZO (A1)

where 5‘(5), and O'(S) are polynomials, at most second degree and 7 (S) is a first-degree polynomial. The exact solution of

Eq.(A1) can be obtain by using the transformation.

v(s)=9(s)y(s) (")
This transformation reduces Eq.(A1) into a hypergeometric-type equation of the form
o(s)y"(s)+z(s)y'(s)+Ay(s)=0 (A3)
The function ¢(X) can be defined as the logarithm derivative

#(s) _n(s) (Ad)

#(s) o(s)
With 77 (S) being at most a first-degree polynomial. The second part of (S) being Y(S) in Eq. (A2) is the hypergeometric

function with its polynomial solution given by Rodrigues relation as
B

y(s) == L0 (5)p(s)] (n5)

p(s)ds"

where Bm is the normalization constantand © (S) the weight function which satisfies the condition below;

(o(s)p(s)) =2(s)p(s) (A6)

where also

7(s)=7(s)+27(s) (A7)

For bound solutions, it is required that

7'(s) <0 (A8)

The eigenfunctions and eigenvalues can be obtained using the definition of the following function 72'(8) and parameter A,
respectively:

! _ ~ 4 _ =~ 2

7(s)=2 (3)2 £() i\/{d (3)2 T(S)J ~5(s)+ko (s) (A9)
and

A=k +7(s) (A10)

The value of K can be obtained by setting the discriminant in the square root in Eq. (A9) equal to zero. As such, the new
eigenvalues equation can be given as

;t+nr'(s)+@a"(s)=o,(n=0,1,2,...) (A11)



