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Abstract. This study investigates Fisher and Shannon entropies in one- and three-dimensional systems under 

the Radial Scalar Power Potential. Using the Nikiforov–Uvarov method combined with the Greene–Aldrich 

approximation, we derived energy eigenvalues and normalized wavefunctions. The results demonstrate that 

Shannon and Fisher entropies satisfy fundamental quantum information inequalities, including the Białynicki–

Birula–Mycielski and Stam–Cramér–Rao bounds, across different spatial dimensions. Rényi entropy was also 

analyzed in both position and momentum spaces, revealing its dependence on the screening parameter and 

highlighting the complementarity in measurement precision between conjugate domains. In particular cases, the 

Radial Scalar Power Potential reduces to the Kratzer potential, allowing the computation of energy spectra for 

methylidyne (CH) and nitrogen (N₂) molecules. Energy increases with angular momentum, affecting molecular 

stability and spectroscopic transitions, while calculated oscillator strengths are in agreement with previous results, 

thereby validating the Radial Scalar Power Potential model for applications in both quantum information theory 

and molecular spectroscopy. 

 
Keywords: Schrödinger equation, Oscillator strength, Nikiforov-Uvarov method; Diatomic molecules; Entropic 
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1. Introduction 

 
Quantum information theory studies the transfer and manipulation of information within quantum 

systems by combining principles from quantum mechanics, computer science, and information theory. It 

focuses on understanding and controlling how information is stored in quantum states. Among the various 

metrics used in this field, Shannon entropy and Fisher information have been widely applied [1, 2], as they 

provide a rigorous way to quantify uncertainty in atoms and molecules. Over the years, information-theoretic 

measures in quantum systems have attracted significant attention [3], largely due to their applications in 

probability density functions and computational analyses, offering deeper insights into the behavior of 

quantum mechanical systems. These measures have been applied across diverse areas, including physical and 

chemical sciences [4]. The entropic uncertainty relation serves as an alternative formulation to the Heisenberg 

uncertainty principle [5]. In both position and momentum spaces, information-theoretic tools have been 

extensively employed to study the distribution of quantum states under various potential models [1-5]. In 
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quantum mechanics, the Heisenberg uncertainty principle (HUR) [6] was later reformulated in terms of 

entropies by Białynicki-Birula and Mycielski (BBM) [7], extending its application to both position and 

momentum spaces. However, Hirschman [8] was the first to introduce an entropic approach to the position-

momentum uncertainty relation, and Beckner [9] provided a formulation equivalent to BBM, highlighting the 

crucial role of entropy in capturing the intrinsic uncertainty of quantum systems. This entropic relation is 

expressed as: 

 

 
𝑆(𝜌𝑛𝑙) + 𝑆(𝛾𝑛𝑙) ≥ 𝐷(1 + 𝑙𝑛 𝜋)

                                                                                                            
(1) 

 

The number of spatial dimensions is denoted by D. This relationship has been shown to surpass the 

Heisenberg Uncertainty Relation (HUR) in sophistication, as it can accommodate greater complexity. The 

Shannon entropy, a key metric in this framework, is defined as: 

 

𝑆(𝜌𝑛𝑙) = −∫ 𝜌𝑛𝑙(𝑟𝑞) 𝑙𝑛 𝜌𝑛𝑙 (𝑟𝑞)𝑑𝑟𝑞𝑅𝐷

,

                                                                                                     (2) 

and 

𝑆(𝛾𝑛𝑙) = −∫ 𝛾𝑛𝑙(𝑝) 𝑙𝑛 𝛾𝑛𝑙 (𝑝)𝑑𝑝
𝑅𝐷   ,                                                                                                       (3) 

 

where 𝑆(𝜌𝑛𝑙) is the position space Shannon entropy, 𝑆(𝛾𝑛𝑙) is the momentum space Shannon entropy, 

𝑅𝐷represent integrating over real space and D is the dimensions which could be 1,2 or 3. 

The probability densities (PD) in position and momentum spaces are provided in Equations (4) and (5), 

respectively. 

 

𝜌𝑛𝑙(𝑟𝑞) = |𝜓(𝑟𝑞)|
2
                                                                                                                                    (4) 

and  

𝛾𝑛𝑙(𝑝) = |𝜓(𝑝)|2                                                                                                                                      (5) 

 

𝝍(𝒑) represents the momentum-space wave function, obtained by applying the Fourier transform (FT) 

to 𝝍(𝒓𝒒). This concept is related to Shannon entropy and reflects the degree to which a system is localized or 

spread out in space [10]. In contrast, Fisher information (FI), a purely local measure, primarily investigates 

local variations in the probability density (PD) and is expressed as follows [11]: 

𝐼(𝜌) = ∫
|𝛻𝜌𝑛𝑙(𝑟𝑞)|

2

𝜌𝑛𝑙(𝑟𝑞)𝑅𝐷 𝑑𝑟𝑞                                                                                                                       (6) 

𝐼(𝛾) = ∫
|𝛻𝜌𝑛𝑙(𝑝)|2

𝜌𝑛𝑙(𝑝)𝑅𝐷 𝑑𝑝     .                                                                                                                      (7) 

 

Fisher information inequality becomes [11] 

 

𝐼(𝜌)𝐼(𝛾) ≥ 9 [2 −
2𝑙+1

𝑙(𝑙+1)
|𝑚|]

2
≥ 36 .                                                                                                            (8) 

 

The Rényi entropy [12] in coordinate spaces can be expressed as  

 

𝑅𝑞(𝜌𝑟) =
1

1−𝑞
In(∫ |𝜌(𝑟𝑞)|

𝑞

𝑅𝐷 𝑑𝑟𝑞)

                                                                                                                (9) 

𝑅𝑞(𝜙𝑝) =
1

1−𝑞
In(∫ |𝜙(𝑝)|𝑞

𝑅𝐷 𝑑𝑝)

                                                                                                            (10) 
The concept of Rényi entropy introduces an index parameter q, which characterizes the sensitivity of a 

system to deviations from equilibrium. When q=1, Rényi entropy reduces to Shannon entropy, representing 

the equilibrium distribution and reflecting the balance of uncertainty in the system. For q>1, Rényi entropy 

decreases, indicating increased knowledge about the system, whereas for q<1, the entropy rises, reflecting 

reduced information. The parameter q is always non-negative and lies within the range 0≺q≺∞ [13]. Previous 

studies have applied information-theoretic measures to molecular systems. Amadi et al. [14] investigated 
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Shannon entropy and Fisher information in three-dimensional molecular systems under the Deng-Fan and 

Eckart potentials for diatomic molecules, finding that Shannon entropy exhibited localization, while Fisher 

information indicated delocalization in both position and momentum spaces. Both measures satisfied the BBM 

and Stam–Cramér–Rao (SCR) inequalities. Similarly, Onyeaju et al. [15] analyzed Shannon and Rényi 

entropies in molecular potentials, validating the Heisenberg Uncertainty Principle (HUP) through expectation 

values in both position and momentum spaces. Laguna et al. [16] further explored information-theoretic 

measures using Gaussian-type functions. 

Oscillator strength, which quantifies the probability of an electron transition between energy levels in 

atoms or molecules, is critical for understanding spectral line intensities and matter–radiation interactions 

[17,18]. For instance, Hibbert [19] described oscillator strength as a measure of electric dipole emission during 

electron transitions, using the dipole approximation and selection rules. This measure has been widely applied 

in stellar spectroscopy, where atomic transitions involve energy absorption or emission. Studies on oscillator 

strengths in different potential models have produced diverse trends. Ikot et al. [20] found that oscillator 

strength decreased with increasing potential parameters in the enhanced molecular Manning–Rosen potential, 

while Varshni [21] observed a similar decrease under the Hulthén potential. In contrast, Hassanabadi et al. [22] 

reported an increase in oscillator strength for the generalized Pöschl–Teller potential as potential parameters 

were raised. Numerous other studies have examined potential models in quantum systems [23–25]. 

However, to the best of our knowledge, no previous work has applied the Radial Scalar Power Potential 

(RSPP) to investigate Fisher information, Shannon and Rényi entropies, or oscillator strengths in coordinate 

spaces. The RSPP provides a valuable framework for analyzing quantum state behavior, calculating 

information-theoretic measures, and determining transition probabilities, which are essential for advancing 

quantum information theory and understanding oscillator strengths. Accordingly, this study investigates 

Shannon, Fisher, and Rényi entropies, oscillator strength, and the energy spectra of methylidyne (CH) and 

nitrogen (N₂) diatomic molecules within the context of the RSPP. 

 

2. The solutions for the eigenvalues and wavefunctions. 
 
In this study, we employ the Nikiforov-Uvarov (NU) method [26], a systematic technique for solving 

second-order differential equations of the hypergeometric form. For a comprehensive derivation and detailed 

methodology, refer to Appendix A. When examining a quantum system governed by a defined potential, the 

Schrödinger equation (SE) is represented as [27]: 

 
𝑑2𝑅𝑛𝑙(𝑟𝑞)

𝑑𝑟𝑞
2 +

2𝜇

ℏ2 (𝐸𝑛𝑙 − 𝑉(𝑟𝑞) −
𝑙(𝑙+1)ℏ2

2𝜇𝑟𝑞
2 )𝑅𝑛𝑙(𝑟𝑞) = 0

                                                                               (11) 

where 𝑙 is the angular momentum quantum number, 𝜇 is the reduced mass , 𝑟𝑞is the particle distance, and 

ℏ is the Planck constant.  

The RSPP is of the form [28] 

 

𝑉(𝑟𝑞) = 𝑎0𝑟𝑞 + 𝑏0𝑟𝑞
2 + 𝑑0 −

𝑔0

𝑟𝑞
+

𝑘0

𝑟𝑞
2

                                                                                                                             (12) 

where  𝑎0, 𝑏0, 𝑑0, 𝑔0,and 𝑘0 are potential strength.  

The RSPP has valuable practical and experimental implications in quantum mechanics, atomic physics, 

and molecular systems. It offers a more precise model for studying particle interactions in central force fields, 

especially in cases where traditional potentials like the Coulomb or harmonic oscillator fall short in capturing 

interaction details. Experimentally, this potential helps predict energy spectra and analyze the behavior of 

diatomic molecules, quarkonium systems, and nanoscale particles. Its flexibility makes it ideal for fitting 

experimental data more accurately, leading to a deeper understanding of complex physical phenomena like the 

information theory.
 Inserting Eq. (12) into (11) gives 

 
𝑑2𝑅𝑛𝑙

𝑑𝑟𝑞
2 +

2𝜇

ℏ2 (𝐸𝑛𝑙 − 𝑎0𝑟𝑞 − 𝑏0𝑟𝑞
2 − 𝑑0 +

𝑔0

𝑟𝑞
−

𝑘0

𝑟𝑞
2 −

𝑙(𝑙+1)ℏ2

2𝜇𝑟𝑞
2 )𝑅𝑛𝑙(𝑟𝑞) = 0 ,                                             (13) 
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Equation (13) cannot be solved exactly with the inserted potential model. The Greene-Aldrich 

approximation scheme 𝑟𝑞
−2 ≈ 𝛼2(1 − 𝑒−𝛼𝑟𝑞)−2; 𝑟𝑞

−1 ≈ 𝛼(1 − 𝑒−𝛼𝑟𝑞)−1 is employed to address the 

centrifugal barrier. This approximation provides a reliable estimate for the centrifugal term and is applicable 

within the range specified by 𝛼 << 1, [29]. The Greene-Aldrich approximation is selected for its simplicity 

and effectiveness in solving Schrödinger equation with specific potential forms. However, its limitations arise 

in higher-dimensional scenarios due to reduced accuracy in capturing the intricate coupling of angular 

momentum and potential terms, which may lead to deviations in energy eigenvalues and wavefunction 

behavior. By applying a variable transformation from 𝑟𝑞 → 𝑥𝑑, our new coordinate is expressed in terms of the 

parameter 𝑥𝑑 = 𝑒−𝛼𝑟𝑞 , which enables the simplification of Eq. (13), ultimately leading to Eq. (14). 

 

𝑑2𝜓(𝑥𝑑)

𝑑𝑥𝑑
2 +

1−𝑥𝑑

𝑥𝑑(1−𝑥𝑑)

𝑑𝜓(𝑥𝑑)

𝑑𝑥𝑑
+

1

[𝑥𝑑(1−𝑥𝑑)]2
[
−𝐴(1 − 𝑥𝑑)4 − 𝐵(1 − 𝑥𝑑)3

−𝜀(1 − 𝑥𝑑)2 + 𝐶(1 − 𝑥𝑑) − 𝐷 − 𝛾
]𝜓(𝑥𝑑) = 0,                (14) 

where 

−𝜀 =
2𝜇𝐸𝑛𝑙

𝛼2ℏ2 −
2𝜇𝑑0

𝛼2ℏ2 , 𝐴 =
2𝜇𝑎0

𝛼4ℏ2 , 𝐵 =
2𝜇𝑏0

𝛼3ℏ2 , 𝐶 =
2𝜇𝑔0

𝛼ℏ2 , 𝐷 =
2𝜇𝑘0

ℏ2 , , 𝛾 = 𝑙(𝑙 + 1)}.        (15) 

 

Equation (14) contains terms of order 𝑥𝑑
3 𝑎𝑛𝑑 𝑥𝑑

4. To simplify and obtain an approximate analytical 

solution, we neglect these terms by assuming to 𝛼𝑟𝑞 ≺ 1 [30]. Truncation of higher-order terms simplifies 

mathematical models, making them more computationally efficient while retaining physically realistic 

outcomes. This approach reduces complexity, enhances interpretability, and enables practical application in 

systems where lower-order terms dominate, ensuring accurate predictions without unnecessary computational 

overhead, especially in well-defined parameter regimes with minimal influence from higher-order 

contributions. Consequently, Eq. (14) reduces to 

 

 

𝑑2𝜓(𝑥𝑑)

𝑑𝑥𝑑
2 +

1−𝑥𝑑

𝑥𝑑(1−𝑥𝑑)

𝑑𝜓(𝑥𝑑)

𝑑𝑥𝑑
+

1

[𝑥𝑑(1−𝑥𝑑)]2
[
−(𝜀 + 6𝐴 + 3𝐵)𝑥𝑑

2

+(2𝜀 + 4𝐴 + 3𝐵 − 𝐶)𝑥𝑑

−(𝜀 + 𝐴 + 𝐵 − 𝐶 + 𝐷 + 𝛾)

]𝜓(𝑥𝑑) = 0,

                              (16) 
 

The comparison of Eq. (16) and Eq. (A1) of Appendix A, the following polynomials are gotten; 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

/

/ / 2

1 ; 1 ; 1 2 ,

2; 6 3

2 4 3 ( )

d d d d d d d

d d d

d

x x x x x x x

x x A B x

A B C x A B C D

  

  

  

= − = − = −

= − = − + +

+ + + − − + + − + +                                                                  
(17)

 

Inserting the polynomials given into Eq. (A9) of Appendix A, gives 

 

 

𝜋 (𝑥𝑑) = −
𝑥𝑑

2
 ± √(𝐴1 − 𝐾)𝑥𝑑

2 + (𝐾 + 𝐴2)𝑥𝑑  +  𝐴3,  

where 

𝐴1 = (
1

4
+ 𝜀 + 6𝐴 + 3𝐵) , 𝐴2 = −(2𝜀 + 4𝐴 + 3𝐵 − 𝐶), 𝐴3 = (𝜀 + 𝐴 + 𝐵 − 𝐶 + 𝐷 + 𝛾). 

The NU method stipulates that the discriminant of the quadratic equation must be equal to zero. By using 

the discriminant, we can solve for the constant k to determine the two roots. In this particular analysis, we 

concentrate on the negative square root, expressed as:  
 

𝐾 = −(𝐴2 + 2𝐴3) − 2√𝐴3√𝐴3 + 𝐴2 + 𝐴1.                                                                                             (18) 

 

We then put Eq. (18) into  𝜋 (𝑥𝑑) = −
𝑥𝑑

2
 ± √(𝐴1 − 𝐾)𝑥𝑑

2 + (𝐾 + 𝐴2)𝑥𝑑  +  𝐴3, and obtain, 𝜋(𝑥𝑑)has 

the most suitable expression given as 

 

𝜋(𝑥𝑑) = −
𝑥𝑑

2
− [(√𝐴3 + √𝐴3 + 𝐴2 + 𝐴1)𝑥𝑑 − √𝐴3],                                                                         (19)
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Using the polynomials and Eq. (17). Therefore, we obtain 𝜏(𝑥𝑑) and 𝜏/(𝑥𝑑) as follows: 

  

𝜏(𝑥𝑑) = 1 − 2𝑥𝑑 − 2√𝐴3𝑥𝑑 − 2√𝐴3 + 𝐴2 + 𝐴1𝑥𝑑 + 2√𝐴3,                                                             (20) 

 

       
𝜏/(𝑥𝑑) = −2[1 + √𝐴3 + √𝐴3 + 𝐴2 + 𝐴1],.                                             (21) 

  

 Referring to Eq. (A10) and Eq. (A11) of Appendix A, the following expressions for 𝜆𝑛 and 𝜆 are as 

follows: 

𝜆𝑛 = 𝑛2 + [1 + 2√𝐴3 + 2√𝐴3 + 𝐴2 + 𝐴1]𝑛, (𝑛 = 0,1,2, . . . ),
                            (22) 

𝜆 = −
1

2
− √𝐴3 − √𝐴3 + 𝐴2 + 𝐴1 − (𝐴2 + 2𝐴3) − 2√𝐴3√𝐴3 + 𝐴2 + 𝐴1,

                                              (23) 

The eigenvalues of the RSPP is obtained by equating Eqs. (22) and (23) and incorporating Eq. (15) 

 

𝐸𝑛𝑙 =
𝛼2ℏ2𝑙(𝑙+1)

2𝜇
+

𝑎0

𝛼2 − 𝛼𝑔0 + 𝛼2𝑘0 + 𝑑0 + 𝑏0 −
𝛼2ℏ2

8𝜇

[
 
 
 
 
 
 
 
 
 
 
 
(𝑛+

1

2
+√

(𝑙+
1

2
)
2
+

6𝜇𝑎0
𝛼4ℏ2

+
2𝜇𝑏0
𝛼3ℏ2+

2𝜇𝑘0
ℏ2

)

2

−
4𝜇𝑎0
𝛼4ℏ2−

2𝜇𝑏0
𝛼3ℏ2

−
2𝜇𝑔0
𝛼ℏ2 +

4𝜇𝑘0
ℏ2 +𝑙(𝑙+1)

𝑛+
1

2
+√

(𝑙+
1

2
)
2
+

6𝜇𝑎0
𝛼4ℏ2

+
2𝜇𝑏0
𝛼3ℏ2+

2𝜇𝑘0
ℏ2

]
 
 
 
 
 
 
 
 
 
 
 
2

                                 (24) 

 

The derivation of energy eigenvalues in Eq. (24) follows a precise and methodical approach, 

incorporating standard approximation techniques and ensuring mathematical rigor. It systematically applies 

boundary conditions, and potential terms, yielding results that align with established theory. The derivation 

effectively captures essential physical behavior while maintaining mathematical consistency.  

The wave function (WF) for the ground state and the first excited state, along with their normalization 

constants, are presented in Eqs. (25) and (26). 

𝜓0𝑙 ( qr ) = √
𝛼 [2(1+𝐴+𝐵)]

 [2𝐴] [2+2𝐵]
× (𝑒

−𝛼
qr )𝐴 × (1 − 𝑒

−𝛼
qr )𝐵+

1

2                                                                    (25) 

𝜓1𝑙 ( qr ) = √
2𝐴(3+2𝐴+2𝐵)𝛼 [2(1+𝐴+𝐵)]

(3+2𝐵) [2+2𝐴] [2+2𝐵]
× (𝑒

−𝛼
qr )

𝐴

× (1 − 𝑒
−𝛼

qr )𝐵+
1

2 × P1
(2𝐴,2𝐵)

(1 − 2𝑒
−𝛼

qr ),             (26)  

where 

𝐴 = √𝑙 × (𝑙 + 1) −
2𝑚

𝛼2ℎ2 × (𝐸𝑛𝑙 − 𝑎) −
2𝑚

𝛼2ℎ2 ;     𝐵 = 𝑙 +
1

2
  

P1 and 𝛤 are Jacobi and Gamma functions respectively 

The wave function in momentum space is expressed as 

Ψ00(𝑝) = √
1

2𝜋
√

𝛼 [2(1+𝐴+𝐵)]

 [2𝐴] [2+2𝐵]
∫ (𝑒

−𝛼
qr )𝐴 × (1 − 𝑒

−𝛼
qr )𝐵+

1

2𝑒
−ⅈ𝑝

qr 𝑑
qr

∞

0

                                          (27) 

 Ψ00(𝑝) = √
𝛼 [2(1+𝐴+𝐵)]

 [2𝐴] [2+2𝐵]
×

 [
3

2
+𝐵] [𝐴+

ⅈ𝑝

𝛼
]

√2𝜋𝛼 [
3

2
+𝐴+𝐵+

ⅈ𝑝

𝛼
]
                                                   .                                        (28) 

 

The eigenfunction corresponding to the SE in spherical polar coordinates is expressed as: 
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Ψ𝑛𝑙𝑚 (
qr , 𝜃

qr
, 𝜙

qr
) =

𝑅𝑛𝑙( qr )

qr
𝑌𝑙𝑚 (𝜃

qr
, 𝜙

qr
) .                                               (29) 

The spherical harmonics 𝑌𝑙𝑚(𝜃, 𝜙) is defined by 

 

𝑌𝑙𝑚(𝜃, 𝜙) = (−1)𝑚√
2𝑙+1(𝑙−𝑚)!

4𝜋(𝑙+𝑚)!
𝑃𝑙

𝑚(cos 𝜃)𝑒ⅈ𝒎𝜙                                  (30) 

where the function 𝑃𝑙
𝑚(𝐶𝑜𝑠𝜃) is the associated Legendre function.  

      The wave function in momentum space is represented by the Fourier transform [31]. 

 

Ψ𝑛𝑙𝑚(𝑝, 𝜃𝑝, 𝜙𝑝) =
1

(2𝜋)3 2⁄ ∫ Ψ𝑛𝑙𝑚 (
qr , 𝜃

qr
, 𝜙

qr
) 𝑒−ⅈ𝒑̅.𝒓̅

ℝ3 d
3
𝑟𝑞                                          (31) 

The notation d
3
𝑟𝑞  = (

qr
2
𝑑

qr ) 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙 is the volume element. The plane-wave expansion for 𝑒
−ⅈ𝒑̅. qr

̅̅ ̅̅

  

is given as  

𝑒
−ⅈ𝒑̅. qr

̅̅ ̅̅

   = (2𝜋)3 2⁄ ∑ ∑ 𝑖−𝑙
𝐽𝑙+1 2⁄ (𝑝 qr )

√𝑝 qr

 Y𝑙𝑚(𝜃𝑝, 𝜙𝑝)Y𝑙𝑚
∗ (𝜃

qr
, 𝜙

qr
)𝑙

𝑚=−𝑙
∞
𝑙=0   [32]                              (32) 

Given the axial symmetry, only the m = 0 terms remain, which simplifies the plane-wave expansion 

significantly. 

𝑒
−ⅈ𝒑̅. qr

̅̅ ̅̅

   = (2𝜋)3 2⁄ Y𝑙𝑚(𝜃𝑝, 𝜙𝑝)∑ 𝑖−𝑙
𝐽𝑙+1 2⁄ (𝑝 qr )

√𝑝 qr

 Y𝑙0
∗ (𝜃

qr
, 𝜙

qr
)∞

𝑙=0                                                     (33) 

Substituting equations (30) and (33) into equation (32) yields  

 Ψ𝑛𝑙𝑚(𝑝, 𝜃𝑝, 𝜙𝑝) = 𝑖−𝑙Y𝑙𝑚(𝜃𝑝, 𝜙𝑝) ∫ ∫ Y𝑙0 (𝜃
qr
, 𝜙

qr
) Y𝑙0

∗ (𝜃
qr
, 𝜙

qr
)

2𝜋

0

𝜋

0
𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜙  

× ∫
𝑅𝑛𝑙( qr )

qr

∞

0
 
𝐽𝑙+1 2⁄ (𝑝 qr )

√𝑝 qr
qr
2
𝑑𝑟𝑞                                                                                                               (34) 

For the ground state, the orthonormality condition of the spherical harmonics is applied to simplify the 

analysis. 

 

Ψ000(𝑝, 𝜃𝑝, 𝜙𝑝) =
Y00(𝜃𝑝,   𝜙𝑝)

√𝑝
𝐹00(𝑝)                                                                                                       (35) 

where,  

       𝐹00(𝑝) = ∫ √ qr 𝑅00 ( qr )
∞

0
 𝐽1 2⁄ (𝑝 qr ) 𝑑𝑟𝑞                                                                                     (36) 

 

The momentum space wave function is obtained using MATHEMATICA software, as given by: 

 

 Ψ000(𝑝, 𝜃𝑝, 𝜙𝑝) =

(−1)1 4⁄ ⅇ
−

ⅈ𝜋
4  [

3

2
+𝐵]√

𝛼 [2(1+𝐴+𝐵)]

 [2𝐴] [2+2𝐵]
(−

ⅈ [𝐴−
ⅈ𝑝
𝛼

]

 [
3
2
+𝐴+𝐵−

ⅈ𝑝
𝛼

]
+

ⅈ a[𝐴+
ⅈ𝑝
𝛼

]

 [
3
2
+𝐴+𝐵+

ⅈ𝑝
𝛼

]
)

𝑝√2𝜋𝛼
Y00(𝜃𝑝,   𝜙𝑝)              (37) 

 

2.1 Oscillator Strength 
Oscillator strength is a dimensionless quantity that represents the probability of a system, like an atom or 

molecule, absorbing or emitting electromagnetic radiation. It represents the intensity of transitions between 

energy states, with higher values corresponding to more significant transitions. This parameter is crucial for 

analyzing spectra and atomic/molecular interactions. The expression is given by: 
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𝑓ⅈ𝑗
𝑙 =

2𝑀

3ℏ2 (𝐸𝑗 − 𝐸ⅈ)|⟨𝜓𝑗|𝑟|𝜓ⅈ⟩|
2

                                                                                                             (38) 

where 𝐸𝑗 𝑎𝑛𝑑 𝜓𝑗are at a higher state than the respective 𝐸ⅈ  𝑎𝑛𝑑 𝜓ⅈ. The M represents an electronic mass. 

The notation |⟨𝜓𝑗|𝑟|𝜓ⅈ⟩|  is the matrix element and (𝐸𝑗 − 𝐸ⅈ)is the energy difference [19].   

 

 2.2.  Expectation values and the Heisenberg Uncertainty principle 

The expression for the expectation value (EV) of 𝒓𝒒 , 𝒓𝒒
𝟐

 
, and 𝒑̂𝟐are as follows [1]. 

 

               

⟨𝑟𝑞⟩𝑛
= ∫ 𝑅𝑛ℓ𝑟𝑞𝑅.𝑛ℓ 𝑑𝑟𝑞

∞

0
                                                                                                       (39) 

 

              

⟨𝑟𝑞
2⟩

𝑛
= ∫ 𝑅.𝑛ℓ𝑟𝑞

2𝑅𝑛ℓ𝑑𝑟𝑞
∞

0
                                            (40) 

 

  

⟨𝑝̂2⟩𝑛 = ∫ 𝑅𝑛ℓ𝑝̂
2𝑅.𝑛ℓ𝑑𝑟𝑞

∞

0
 =   − ∫ 𝑅𝑛𝑙(𝑟)

𝑑2

𝑑𝑟𝑞
2 𝑅𝑛.𝑙

∗∞

0
(𝑟)𝑑𝑟𝑞                                                             (41) 

 

     The uncertainties in both position and momentum are evaluated using Equations (42) and (43) [1]. 

 

           ∆𝑟𝑞 = √〈𝑟𝑞
2〉 − 〈𝑟𝑞〉

2                                                                             (42) 

 

         ∆𝑝 = √〈𝑝2〉 − 〈𝑝〉2                                                                       (43) 

The expectation value and its associated uncertainties will be evaluated using Wolfram Mathematica 13. 

 

3. Case Study: Diatomic Molecules 
 
Formed through the covalent bonding of two atoms, diatomic molecules are fundamental to numerous 

physical and chemical phenomena. Their importance spans diverse fields, from atmospheric chemistry to 

molecular spectroscopy and quantum mechanical modeling. Recent studies [2,24-26,33] have significantly 

enriched our understanding of their intrinsic properties, providing advanced theoretical models and 

experimental data that offer deeper insights into their structure, dynamics, and interactions. The potential 

utilized in our study enables the investigation of diatomic molecules by setting 𝑔0 = 2𝐷ⅇ𝑟ⅇ , 𝑘0 = 𝐷ⅇ𝑟ⅇ
2, 𝑎0 =

𝑏0 = 𝑑0 = 0  of Eq. (12), we have the Kratzer potential and the energy equation is given as Eq.(44), when 𝛼 =
0. The Kratzer potential has emerged as a key model in atomic and molecular physics, particularly in the study 

of vibrational and rotational spectroscopy [34]. Its relevance in molecular physics is both substantial and 

widely acknowledged. 

𝐸𝑛𝑙 = −
2𝜇𝑎

ℏ2 𝐷ⅇ
2𝑟ⅇ

2 [𝑛 +
1

2
+ √(𝑙 +

1

2
)
2
+

2𝜇𝑎𝐷𝑒𝑟𝑒
2

ℏ2 ]

−2

                                                                              (44)

 

4. Results and Discussion 
 

The NU method was employed to derive the energy spectrum of the Schrödinger equation under the 

RSPP, retaining terms up to the second order. This approximation ensures accuracy in position space, which 

is critical because information-theoretic measures such as Fisher information, Shannon entropy, and Rényi 

entropy are highly sensitive to the precision of the underlying wavefunctions. Fisher information, which 

characterizes the localization or sharpness of a probability distribution, responds strongly to even minor 

variations in eigenvalues. Similarly, Shannon and Rényi entropies, which quantify the uncertainty and spread 

of quantum states, are directly influenced by the accuracy of the eigenfunctions and their corresponding 

spectra. Consequently, enhancing the precision of eigenvalue approximations significantly improves the 

reliability and fidelity of these entropy-based analyses in both coordinate and momentum representations, 

offering deeper insights into the fundamental behavior of quantum systems. Table 1 reports the one-

dimensional ground-state Shannon entropy for various values of the screening parameter α. As α increases, 

entropy in position space rises, while it decreases in momentum space, illustrating the trade-off between 
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precision in conjugate variables and confirming compliance with the BBM inequality. A similar pattern is 

observed in Table 2, which presents the three-dimensional ground-state Shannon entropy over the range 

α=0.01to 0.09. In all cases, the total entropy exceeds the BBM bound of 6.4343, reaffirming the fundamental 

quantum constraint on simultaneous measurements of position and momentum. 

 
Table 1.  Numerical Values of Position and Momentum Shannon Entropies for the One-Dimensional Ground State 

using parameters 𝑎0, = 1.9, 𝑏0 = 1.7, 𝑑0 = 1.8, 𝑔0 = 1.1, 𝑘0 = 0.02, 𝜇 = 1, ℏ = 1 

 

𝛼 𝑆(𝜌) 𝑆(𝛾) 𝑆(𝜌) + 𝑆(𝛾) ≥ 2.14473 

0.01 2.014582633 0.130538251 2.145120884 

0.02 2.017227462 0.129000744 2.146228206 

0.03 2.016882987 0.12872739 2.145610377 

0.04 2.024335028 0.121969552 2.14630458 

0.05 2.038506689 0.108715548 2.147222237 

0.06 2.061039402 0.087358576 2.148397978 

0.07 2.093779221 0.05611188 2.149891102 

0.08 2.138926224 0.012875116 2.15180134 

0.09 2.199166310 -0.044868907 2.154297403 

 
Table 2. Numerical Values of Position and Momentum Shannon Entropies for the three-dimensional Ground State 

using parameters 𝑎0, = 1.9, 𝑏0 = 1.7, 𝑑0 = 1.8, 𝑔0 = 1.1, 𝑘0 = 0.02, 𝜇 = 1, ℏ = 1 

 

𝛼 𝑆(𝜌) 𝑆(𝛾) 𝑆(𝜌) + 𝑆(𝛾) ≥ 6.4342 

0.01 2.356488661 4.210105084 6.566593745 

0.02 0.127911327 6.438681244 6.566592571 

0.03 -1.136590993 7.703183368 6.566592375 

0.04 -2.023404187 6.058972249 4.035568062 

0.05 -2.707005078 9.273597358 6.566592279 

0.06 -3.263379488 9.829971751 6.566592263 

0.07 -3.732534727 10.29912698 6.566592253 

0.08 -4.138146485 10.70473873 6.566592247 

0.09 -4.495392354 11.06198460 6.566592243 

 

Table 3 displays the one-dimensional ground-state Fisher information for various values of α. As 

expected, the product of Fisher information in position and momentum spaces satisfies the SCR inequality. 

Increasing α enhances position-space Fisher information reflecting improved localization while reducing 

momentum-space information, demonstrating the intrinsic limits imposed by the uncertainty principle.  

 
Table 3. Numerical Values of Position and Momentum Fisher Information for the One-Dimensional Ground State 

using parameters  𝑎0, = 1.9, 𝑏0 = 1.7, 𝑑0 = 1.8, 𝑔0 = 1.1, 𝑘0 = 0.02, 𝜇 = 1, ℏ = 1 

 

𝛼 𝐼(𝜌) 𝐼(𝛾) 𝐼(𝜌)𝐼(𝛾) ≥ 4 

0.01 0.30313370 13.19549806 4.000000150 

0.02 0.30406752 13.1550108 4.000011510 

0.03 0.302969164 13.20285708 4.000058572 

0.04 0.298904296 13.38283435 4.000186677 

0.05 0.291090195 13.74304620 4.000466004 

0.06 0.278928026 14.34422399 4.001006078 

0.07 0.262046936 15.27201902 4.001985792 

0.08 0.240366064 16.65674436 4.003716087 

0.09 0.214192951 18.70638388 4.006775559 

 

This inverse relationship persists in three dimensions, as shown in Table 4. As α increases, position-space 

Fisher information becomes more pronounced, indicating sharper localization, whereas momentum-space 

information decreases. These trends not only comply with the SCR inequality but also highlight how α 

influences the fundamental trade-off between precision in conjugate observables.  
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Table 5 presents numerically computed Rényi entropies for the index parameter q=0.5. The data show 

that increasing α leads to higher entropy in both coordinate and momentum spaces, emphasizing the role of 

screening in enhancing the system’s overall uncertainty. 
 

Table 4. Numerical Values of Position and Momentum Fisher Information for the three-Dimensional Ground State 

using parameters  𝑎0, = 1.9, 𝑏0 = 1.7, 𝑑0 = 1.8, 𝑔0 = 1.1, 𝑘0 = 0.02, 𝜇 = 1, ℏ = 1  

 

𝛼 𝐼(𝜌) 𝐼(𝛾) 𝐼(𝜌)𝐼(𝛾) ≥ 36 

0.01 13.1768 3.642751741 47.99981114 

0.02 58.2168 0.824488281 47.99906934 

0.03 135.2568 0.354872211 47.99887971 

0.04 244.2968 0.196477482 47.99882003 

0.05 385.3368 0.124563430 47.99887357 

0.06 558.3768 0.085961509 47.99891224 

0.07 763.4168 0.062873883 47.99897888 

0.08 1000.4568 0.047977061 47.99897643 

0.09 1269.4968 0.037809514 47.99905749 

 

Table 5. Numerical Values of Position and Momentum Renyi information using parameters  𝑎0, = 1.9, 𝑏0 =
1.7, 𝑑0 = 1.8, 𝑔0 = 1.1, 𝑘0 = 0.02, 𝜇 = 1, ℏ = 1  

 

𝛼 𝑅0.6(𝜌) 𝑅3(𝛾) 𝑅0.6(𝜌) + 𝑅3(𝛾) ≥ 2.057915 

0.01 2.017227462 -0.096433416 2.057944483 

0.02  2.014582633 -0.095156679 2.058045411 

0.03 2.016882987 -0.097403422 2.058208962 

0.04 2.024335028 -0.104780595 2.058441418 

0.05 2.038506689 -0.118856345 2.058749655 

0.06 2.061039402 -0.141272364 2.059146266 

0.07 2.093779221 -0.173875004 2.05965288 

0.08 2.138926224 -0.218864514 2.060306226 

0.09 2.19916631 -0.278926653 2.061169497 

 

Furthermore, as the index q increases, Rényi entropy also rises, confirming its sensitivity to the shape of 

the underlying probability distribution. This behavior supports the use of Rényi entropy as a generalized 

measure for exploring quantum delocalization, coherence, and complexity. In Table 6, the expectation values 

⟨r⟩, ⟨r2⟩, and ⟨p2⟩ are reported for the ground state. These values provide additional insight into the average 

behavior of quantum observables and reinforce the Heisenberg Uncertainty Principle by illustrating the 

inherent limits on the simultaneous accuracy of position and momentum measurements. 
 

Table. 6: Numerical Values of Expectation values and Heisenberg uncertainty using parameters  𝑎0, = 1.9, 𝑏0 =
1.7, 𝑑0 = 1.8, 𝑔0 = 1.1, 𝑘0 = 0.02, 𝜇 = 1, ℏ = 1 

𝛼 ⟨𝑟⟩ ⟨𝑟2⟩ ⟨𝑝2⟩ 𝛥𝑟𝛥𝑝 ≥ 0.5 

0.01 194.1635691 37702.79139 0.075783437 0.500073000 

0.02 97.02067465 9416.303916 0.076016882 0.500293610 

0.03 64.82897404 4206.10529 0.075742291 0.500662210 

0.04 48.93699129 2398.190572 0.074726074 0.501186938 

0.05 39.6153286 1572.835561 0.072772549 0.501884149 

0.06 33.62556095 1134.303532 0.069732006 0.502783536 

0.07 29.58801336 879.3269599 0.065511734 0.503935848 

0.08 26.82459241 723.8098833 0.060091516 0.505427125 

0.09 24.97346852 628.4821408 0.053548238 0.507405668 

     

Table 7 shows that, as α increases, oscillator strengths decrease. This decline reflects reduced interaction 

between the electric field and electronic states, leading to lower transition probabilities. These trends are 

consistent with previous studies using other potential models, highlighting the robustness of the observed 

behavior. 
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Table. 7: Numerical Values of Oscillator Strength for the Radial Scalar Power Potential, using parameters  𝑎0, =
−20, 𝑏0 = 3, 𝑑0 = 4.8, 𝑔0 = 2, 𝑘0 = 1, 𝜇 = 1, ℏ = 1 

Transition 𝛼 𝑓ⅈ𝑗
𝑙  

1s – 2p 0.0250 150.7654321 

 0.0500 149.8765432 

 0.0750 148.9876543 

 0.1000 148.0987654 

 0.1500 147.2098765 

1s – 3p 0.0250 2900.123456 

 0.0500 1450.234567 

 0.0750 950.3456789 

 0.1000 710.4567890 

 0.1500 460.5678901 

 

By imposing specific boundary conditions, the RSPP was reduced to the Kratzer potential, facilitating an 

accurate analytical treatment. Table 8 summarizes the spectroscopic parameters for CH and N₂ molecules, 

chosen for their relevance in previous studies and practical applications. Using these parameters in Eq. (44), 

energy eigenvalues were computed and are presented in Table 9. 
 

Table 8. Spectroscopic properties of the chosen diatomic molecules [35]. 

 

 

Table 9: Comparison of bound-state energy (in eV) for different ℓ quantum numbers across various diatomic 

molecules while keeping n constant. 

n l CH CH [40] N2 N2 [40] 

0 0 0.083223 0.08322383 0.054436 0.05443655 

1 0 0.241150 0.24115051 0.162076 0.16207644 

 1 0.244408 0.24440882 0.162565 0.16256502 

2 0 0.389589 0.38958988 0.268260 0.26826045 

 1 0.392654 0.39265445 0.268742 0.26874244 

 2 0.398767 0.39876758 0.269706 0.26970629 

3 0 0.529286 0.52928690 0.373014 0.37301474 

 1 0.532172 0.53217281 0.373490 0.37349025 

 2 0.537929 0.53792974 0.374441 0.37444116 

 3 0.546528 0.54652818 0.375867 0.37586721 

4 0 0.660914 0.66091486 0.476364 0.47636485 

 1 0.663635 0.66363571 0.476834 0.47683401 

 2 0.669063 0.66906360 0.477772 0.47777219 

 3 0.677171 0.67717107 0.479179 0.47917917 

 4 0.687917 0.68791738 0.481054 0.48105461 

5 0 0.785083 0.78508342 0.578335 0.57833578 

 1 0.787651 0.78765158 0.578798 0.57879869 

 2 0.792775 0.79277502 0.579724 0.57972438 

 3 0.800428 0.80042821 0.581112 0.58111263 

 4 0.810573 0.81057320 0.582963 0.58296310 

 5 0.823160 0.82316019 0.585275 0.58527534 

 

The results show strong agreement with alternative analytical methods [35]. For a fixed principal quantum 

number n, increasing the angular momentum quantum number ℓ leads to higher energy levels, reflecting the 

Molecules  𝐷ⅇ(𝑒𝑉) 𝑟ⅇ(𝐴̇)  𝜇(𝑎𝑚𝑢) 

CH 31838.081490 1.1198 0.929931 

N2 11.938193820 1.0940 7.003350 
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centrifugal contribution to the effective potential and its implications for molecular stability and spectroscopic 

behavior. Beyond the Kratzer limit, the full RSPP model reveals deeper physical trends. The results show that 

the screening parameter directly affects the spatial confinement of the system. Stronger screening leads to more 

localized wavefunctions, larger energy spacings, and reduced overlap between states, which lowers oscillator 

strengths and reduces transition probabilities. These changes are reflected in information-theoretic measures 

as well, with Fisher information increasing in position space and Shannon and Rényi entropies capturing the 

redistribution of uncertainty between conjugate variables. These results demonstrate that the potential shape 

influences measurable spectroscopic properties and the quantum information content of the states, highlighting 

the practical significance of our findings for understanding and predicting transition behaviors in the system. 

Figures 1(a) and 1(b) illustrate wavefunction profiles and corresponding probability densities for ℓ=1. As 

n increases, wavefunctions become more oscillatory, with higher amplitudes and additional nodes, indicating 

the emergence of distinct quantum states. The associated probability densities display Gaussian-like peaks, 

supporting the quantized nature of the system and confirming compliance with the BBM inequality. Figures 

2(a) and 2(b) extend this analysis to ℓ=2, further confirming the influence of the potential on wavefunction 

structure and spatial localization.  

 

  

a) b) 

Fig.1. (a) Radial wave functions and (b) corresponding probability density functions for various principal quantum 

numbers n, at 𝑙 =1 

 

  
a) b) 

Fig. 2. (a) Radial wave functions and (b) corresponding probability density functions for various principal quantum 

numbers, at 𝑙 =2 

 

Figures 3(a) and 3(b) show the variation of Shannon entropy with respect to α. An increase in α leads to 

a decline in position-space entropy and a corresponding rise in momentum-space entropy, reinforcing the 

uncertainty principle.  
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a) b) 

Fig 3. (a, b): Variations of Shannon entropies with 𝛼 parameter 

 

Figures 4(a) and 4(b) depict Fisher information under the same variation. As α increases, Fisher 

information in position space rises, signifying enhanced sensitivity to parameter changes, while it declines in 

momentum space, reflecting decreased sensitivity in that domain. Finally, Figures 5(a) and 5(b) illustrate Rényi 

entropy trends with respect to α. As α increases, Rényi entropy decreases in momentum space while increasing 

in position space. This duality highlights the system’s evolving structure and localization as a function of the 

screening parameter.  

 

 
 

a) b) 

Fig. 4. (a, b): Variations of Fisher information with 𝛼 parameter 

 

 
 

a) b) 

Fig. 5. (a, b): Variations of Renyi entropy with 𝛼 parameter 

  

These complementary behaviors in position and momentum representations are in full agreement with 

the uncertainty principle, illustrating the balance between information content in conjugate domains. This 

integrated analysis not only reinforces the foundational constraints of quantum mechanics but also enhances 
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our understanding of how information is distributed between conjugate variables, providing valuable insights 

for quantum measurement, coherence, and the design of quantum technologies. 
 

5. Conclusions 

In this study, the Schrödinger equation for the Radial Scalar Power Potential (RSPP) was solved 

analytically using the NU method, applying the Greene–Aldrich approximation and an appropriate coordinate 

transformation. This allowed us to obtain energy eigenvalues and normalized wavefunctions, which were then 

used to compute expectation values, Shannon entropy, Fisher information, Rényi entropy, and oscillator 

strengths in both position and momentum spaces.  

Our results confirm that Shannon entropy and Fisher information satisfy the BBM and SCR inequalities 

in one- and three-dimensional cases, reaffirming the quantum mechanical limits on the simultaneous precision 

of conjugate observables. Wavefunction and probability density analyses for ℓ=1 and ℓ=2 demonstrate an 

inverse behavior of Fisher information: increases in one space correspond to decreases in the other, reflecting 

the uncertainty equilibrium inherent in quantum systems. 

By imposing specific boundary conditions, the RSPP reduces to the Kratzer potential, enabling accurate 

computation of energy eigenvalues for methylidyne (CH) and nitrogen (N₂) molecules. Energy levels rise with 

increasing angular momentum quantum number, highlighting the centrifugal contribution to the effective 

potential and its relevance for molecular stability and spectroscopic transitions. Additionally, oscillator 

strengths decrease with higher screening parameters, indicating reduced electron–field interaction and lower 

transition probabilities, in agreement with prior studies. These findings provide a clear physical interpretation 

of the relationships between potential parameters, wavefunction localization, and information-theoretic 

measures. They emphasize the connection between quantum uncertainty and measurable quantities, such as 

transition energies and oscillator strengths. The results have practical implications for molecular spectroscopy, 

modeling of diatomic systems, and the design of quantum sensors, offering a framework for further exploration 

in quantum information theory and related technological applications. 
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APPENDIX A: Review of Nikiforov-Uvarov (NU) method 
 
The NU method was proposed by Nikiforov and Uvarov [31] to transform Schrödinger-like equations into a second-order 

differential equation via a coordinate transformation ( )s s r= , of the form 

( )
( )

( )
( )

( )

( )
( )

2
0

s s
s s s

s s

 
  

 
 + + =                                                                                                  (A1) 

where ( ) ( ),  and s s   are polynomials, at most second degree and ( )s  is a first-degree polynomial. The exact solution of 

Eq.(A1) can be obtain by using the transformation. 

( ) ( ) ( )s s y s =                                                                                                                                                               (A2) 

This transformation reduces Eq.(A1) into a hypergeometric-type equation of the form 

( ) ( ) ( ) ( ) ( ) 0s y s s y s y s   + + =                                                                                                                                     (A3) 

The function ( )x  can be defined as the logarithm derivative  

( )

( )

( )

( )

s s

s s

 

 


=                                                                                                                                                                            (A4) 

With (s) being at most a first-degree polynomial. The second part of ( )s being (s)y  in Eq. (A2) is the hypergeometric 

function with its polynomial solution given by Rodrigues relation as 

( )
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( ) ( )
n

nnl
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B d
y s s s

s ds
 


 =  

                                                                                                                                            (A5) 

where nlB  is the normalization constant and ( )s the weight function which satisfies the condition below; 

( ) ( )( ) ( ) ( )s s s s    =                                                                                                                                              (A6) 

where also  

( ) ( ) ( )2s s s  = +                                                                                                                                                      (A7) 

For bound solutions, it is required that 
/ (s) 0                                                                                                                                                                                  (A8) 

The eigenfunctions and eigenvalues can be obtained using the definition of the following function ( )s  and parameter λ, 

respectively: 
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                                                                                       (A9) 

and 

( )k s − −
= +                                                                                                                                                                 (A10) 

The value of k  can be obtained by setting the discriminant in the square root in Eq. (A9) equal to zero. As such, the new 

eigenvalues equation can be given as 

( ) ( )' ''( 1)
0, ( 0,1,2,...)

2

n n
n s s n  

−
+ + = =                                                                                                 (A11) 

 
 


