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Abstract. Gamma-ray bursts represent some of the most energetic and complex phenomena in the universe, 

characterized by highly variable light curves that often contain observational gaps. Reconstructing these light 

curves is essential for gaining deeper insight into the physical processes driving such events. This study proposes a 

machine learning-based framework for the reconstruction of gamma-ray burst light curves, focusing specifically 

on the plateau phase observed in X-ray data. The analysis compares the performance of three sequential modeling 

approaches: a bidirectional recurrent neural network, a gated recurrent architecture, and a convolutional model 

designed for temporal data. The findings of this study indicate that the Bidirectional Gated Recurrent Unit model 

showed the best predictive accuracy among the evaluated models across all gamma-ray burst types, as measured 

by Mean Absolute Error, Root Mean Square Error, and Coefficient of Determination. Notably, Bidirectional Gated 

Recurrent Unit exhibited enhanced capability in modeling both gradual plateau phases and abrupt transient 

features, including flares and breaks, particularly in complex light-curve scenarios. 
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1. Introduction 
 

Gamma-ray bursts (GRBs) are among the most energetic and transient phenomena in the Universe, 

characterized by brief flashes of high-energy photons, typically peaking above ~0.1 MeV [1]. These events 

exhibit a remarkable diversity in duration, ranging from milliseconds to several minutes, as well as highly 

variable temporal and spectral structures, which pose significant challenges for theoretical modeling. Over the 

past decade, the field of GRB research has undergone a rapid transformation, evolving from a specialized area 

of high-energy astrophysics into a major domain of observational cosmology and astrophysics. This progress 

has been driven by a succession of space missions that enabled both accurate localization and extensive multi-

wavelength follow-up of GRBs. 

The Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory 

provided strong evidence for the isotropic sky distribution of GRBs, implying an extragalactic origin [2]. The 

Swift Burst Alert Telescope (BAT) [3] detects prompt emission, and the follow-up afterglow is detected using 

the X-ray [4]. The subsequent BeppoSAX mission enabled the first detections of X-ray afterglows and accurate 

source localization, which led to the discovery of long-wavelength counterparts and host galaxies [5]. These 

breakthroughs were further advanced by the High Energy Transient Explorer (HETE-II) [6] and complemented 

by extensive ground-based observations in the optical, infrared, and radio bands. 

The detection of long-lived afterglows has enabled in-depth studies of the circumburst environment and 

provided compelling evidence for collimated relativistic outflows. Given their extreme luminosities and 

detectability at high redshifts [8–10], GRBs serve as powerful probes of the distant Universe [11-13]. They 
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offer a unique opportunity to investigate key aspects of cosmology, including the expansion history and the 

nature of dark energy, the cosmic star formation rate, the timing and processes of reionization, as well as the 

chemical enrichment of the interstellar and intergalactic media over cosmic time. 

Consequently, GRBs are not only key astrophysical phenomena but also valuable tools for probing the 

Universe on cosmological scales. To fully utilize their potential, precise modeling of their light curves (LCs) 

is essential. In this context, machine learning (ML) has become an increasingly important tool in astrophysics 

[14-16], with successful applications in different areas of astronomy and other fields [17-22]. These 

advancements have led to a growing interest in using ML for GRB LCs reconstruction.  

The t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm has demonstrated stable clustering 

of GRBs even with partial data removal, highlighting its robustness for dynamic or incomplete datasets [23]. 

ML has also proven effective in localizing previously unidentified GRBs, revealing uniform sky distributions 

and suggesting potential magnetar associations [24]. Clustering analyses of Fermi GRBs using spectral features 

have identified four consistent classes with distinct α and Epeak characteristics, enhancing our understanding 

of GRB subtypes [25]. Optimization-based modeling has successfully reproduced GRB-SN light curves, 

supporting magnetar-driven scenarios with physically plausible parameters [26]. Automatic Gaussian Mixture 

Model (AutoGMM) applied to t-SNE embeddings further revealed coherent density structures, validating the 

use of unsupervised clustering in GRB mapping [27]. Simulated GRB LCs generated with ML techniques have 

been shown to statistically match real data, confirming the reliability of data-driven models [28]. Large-scale 

classification using Uniform Manifold Approximation and Projection (UMAP), t-SNE, and K-means 

consistently separates Fermi GRBs into two main groups across different parameter spaces [29]. A similar 

two-cluster structure was observed in a study linking GRB groupings to physical origins, such as compact 

mergers and collapsars, rather than traditional duration-based classification [30]. These studies collectively 

demonstrate that ML not only enhances GRB classification but also offers a promising pathway for 

reconstructing their complex LC. 

Recently, Dainotti M. G. et al. [31] applied stochastic reconstruction to GRB LC using Willingale (W07) 

and broken power-law (BPL) models, along with Gaussian processes. At 10% noise, uncertainties in key 

parameters-plateau end time, flux, and post-plateau decay index were reduced by up to 43.9%, enhancing the 

accuracy of GRB-based cosmological studies. Sourav S. et. al. [9] applied a novel approach using bidirectional 

LSTM proposed for GRB LC reconstruction to address gaps in observational data. Compared to traditional 

methods (W07, BPL, and their Gaussian Process variants), the Bidirectional Long Short-Term Memory 

(BiLSTM) model generally produced smoother reconstructions but showed a smaller decrease in flux 

uncertainty.  

R. Falco et. al. [32] presents a quantitative analysis of GRB LCs performed using Principal Component 

Analysis (PCA) and t-SNE for dimensionality reduction and visualization. Synthetic LC were generated with 

properties closely matching real ones, showing good overlap in the embedded space. The similarity was further 

confirmed by statistical comparisons, with L2-norm and Wasserstein distances between histograms of real and 

synthetic LCs equal to 5.3 and 0.2, respectively. Building upon these recent advancements, the present work 

introduces a ML-based framework for the reconstruction of GRB LC, focusing on the plateau phase observed 

in X-ray data. Our approach explores and compares the performance of three distinct architectures: BiLSTM, 

Bidirectional Gated Recurrent Unit (BiGRU), and Temporal Convolutional Network (TCN). These models are 

well-suited for sequential data with missing values, enabling more robust reconstruction of LC and improved 

capture of temporal patterns.  

The remainder of this paper is organized as follows: Section 2 describes the data preparation and 

preprocessing steps; Section 3 outlines the architecture and training process for each ML model; Section 4 

presents the evaluation of metrics and experimental results; and Section 5 concludes with a summary. 

 

2. Methodology  
 
2.1 Data Collection and Preprocessing 
 

The dataset used in this study consists of GRB LC obtained from the publicly available Swift XRT 

archive. Each LC was extracted from raw Flexible Image Transport System (FITS) files by extracting key 

observational parameters, including the observation time, flux, and flux uncertainties. To ensure consistency 

across the dataset, non-informative or incomplete entries were excluded during the initial data cleaning phase. 

To restore the temporal order of events, all LC were sorted in ascending order of observation time. 
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Subsequently, time values were normalized by dividing by 102, a transformation that standardizes temporal 

scales and facilitates stable training across models. 

Given the wide dynamic range of GRB flux values, both the flux and its associated uncertainty were 

transformed into logarithmic space using the formula: 

 

𝐹(𝑥) = 𝑙𝑛 (
𝑥

𝑎
) + 1,      (1) 

 

where (x) - is the flux value and (a) - denotes the minimum non-zero flux in the given sequence. This 

transformation improves the numerical stability of the learning process by compressing large magnitudes and 

preserving fine variations in small-scale signals - a critical requirement for deep neural architectures sensitive 

to input distributions. 

To address the inherent sparsity and temporal irregularity of GRB observations, a dense interpolation 

strategy was applied. Specifically, 19 equally spaced points were interpolated between each pair of consecutive 

observations. This approach significantly increases the temporal resolution of each sequence and provides 

more informative context for time-dependent models, such as RNNs and TCNs. The resulting sequences were 

segmented into fixed-size batches, ensuring uniform input dimensions for training. To prevent information 

loss due to short sequences, each batch was upsampled via repetition until the required length was met. This 

strategy enables the model to learn consistent temporal patterns across samples and mitigates overfitting, 

particularly in the case of limited observational windows. The interpolation strategy, normalization by dividing 

time by 102, and logarithmic transformation of flux values were adopted following the approach of Sourav S. 

et al. [9]. These preprocessing steps are essential for preparing the input data for sequential architectures, 

including Bidirectional Gated Recurrent Unit (GRU), Bidirectional LSTM, and TCN, all of which rely on 

structured temporal input for effective reconstruction of GRB LC. 

 

2.2. Bidirectional Long Short-Term Memory Architecture 
 

BiLSTM model was selected as a baseline due to its proven effectiveness in modeling complex temporal 

dependencies, particularly in irregular and noisy time series. BiLSTM architecture is well-suited for capturing 

both forward and backward temporal contexts, which is especially valuable when reconstructing GRB LC with 

observational gaps. The BiLSTM network extends the standard LSTM architecture by incorporating two 

parallel recurrent layers that process the input sequence in both forward and backward directions (Fig. 1). This 

bidirectional processing enables the model to capture context from both past and future time steps, improving 

its ability to learn temporal dependencies. The original BiLSTM architecture was introduced by Schuster and 

Paliwal [33]. Our implementation consists of five stacked BiLSTM layers, each incorporating internal memory 

mechanisms that allow the network to retain information across long sequences. The first four layers are 

configured with return_sequences=True to preserve the temporal structure throughout the network’s depth. 

This design enables hierarchical feature extraction across multiple time scales. The final BiLSTM layer outputs 

a fixed-length representation, which is passed to a fully connected dense layer with a Rectified Linear Unit 

(ReLU) activation function. This layer maps the learned sequence representation to a single flux prediction 

value. Each BiLSTM layer comprises 100 hidden units, and the model is trained using the Adam optimizer 

with mean squared error (MSE) as the loss function. To prevent overfitting, early stopping is applied based on 

validation loss. 

 

 
 

Fig. 1. Architecture of a BiLSTM network and the internal structure of an LSTM cell. 
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Unlike classical regression-based approaches such as the broken power-law (BPL) model - which 

imposes a predefined parametric form - the BiLSTM model provides greater flexibility in capturing the non-

linear and non-stationary nature of GRB LC. It is capable of modeling rapid flux variations, plateau phases, 

and flaring behavior without requiring strict functional assumptions. The left part of the figure illustrates a 

BiLSTM model that processes the input sequence in both forward (hf) and backward (hb) directions to generate 

context-aware outputs at each time step. The right part shows the internal mechanism of an LSTM cell, which 

includes the input, forget, and output gates. These gates control the flow of information based on the current 

input xt and the previous hidden state ht-1, maintaining a memory cell state ct that enables long-term dependency 

learning. 

 

2.3. Temporal Convolutional Network Architecture 
 
TCN architecture was selected as a non-recurrent alternative for sequence modeling, offering several 

advantages such as parallel computation, stable gradients, and effective long-range dependency capture 

through dilated convolutions. TCNs are particularly useful in time-series tasks where causal relationships must 

be preserved, and memory-efficient modeling is desirable. The TCN framework evaluated by Bai et al. [33] 

demonstrated strong performance in sequence modeling tasks compared to both LSTM and GRU architectures. 

Our implementation includes three 1D convolutional layers with causal padding (Fig. 2) to ensure that 

predictions at time t do not depend on future inputs. Each layer uses 64 filters and a kernel size of 5, with 

ReLU activation applied after each convolution. To enable the model to capture longer temporal contexts 

without increasing kernel size, we employ increasing dilation rates of 1, 2, and 4 respectively across the three 

convolutional layers. This expands the receptive field, allowing the model to access information from broader 

time ranges. Following the convolutional layers, the output is flattened and passed to a fully connected dense 

layer, which outputs a single flux prediction per input. As with the BiLSTM model, the TCN is trained using 

the Adam optimizer and MSE as the loss function. Early stopping is employed to prevent overfitting, based on 

validation loss monitoring. 

Unlike recurrent models, TCNs do not rely on internal memory states, which makes them less sensitive 

to vanishing gradients and more efficient for parallelization during training. Furthermore, their ability to handle 

sequences of varying lengths without explicit unrolling makes them attractive for modeling astrophysical 

signals with nonuniform sampling. In the context of GRB LC reconstruction, TCNs offer a unique perspective: 

they capture local and global temporal patterns via stacked convolutional filters while preserving causal 

dependencies. Their structural simplicity and training efficiency position them as a promising alternative to 

recurrent networks, particularly when reconstruction speed and computational cost are critical considerations.  

 

 
 

Fig. 2. Architecture of a TCN and internal structure of a residual block. 

 

The left part of the figure illustrates a stacked TCN model composed of three residual blocks, which 

process the input sequence 𝑥 to produce the output 𝑦. The right part shows the internal structure of a single 
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residual block, featuring two layers of dilated causal convolutions, each followed by weight normalization, 

ReLU activation, and dropout. A 1×1 convolution is applied to the input to ensure dimensional compatibility 

before the residual connection is added. This design enables efficient modeling of long-range dependencies in 

sequential data. 

 

2.4. Bidirectional Gated Recurrent Unit Architecture 
 
GRU is a simplified recurrent neural architecture proposed by Cho et al. [34] as an alternative to the 

LSTM. GRUs simplify the memory gating mechanism of LSTMs while maintaining the ability to capture long-

term dependencies in temporal data. When combined with a bidirectional architecture, GRUs become 

particularly effective at modeling sequences where contextual information from both past and future is relevant 

- a key characteristic of GRB LC with gaps and irregularities. 

The BiGRU architecture used in this study consists of two stacked bidirectional GRU layers (Fig. 3). The 

first layer is configured with return_sequences=True to allow the second GRU layer to process temporal 

dynamics across the full sequence. Each GRU layer contains 64 hidden units, and both layers are wrapped in 

Keras’s Bidirectional wrapper to process input sequences in forward and backward directions. The output of 

the second GRU layer is fed into a dense layer with a linear activation to produce the final flux prediction.  

The model is trained using the Adam optimizer and MSE loss function. An early stopping mechanism is 

applied based on validation loss to ensure optimal convergence and to avoid overfitting. Due to its simplified 

gating and reduced computational cost, BiGRU offers faster training and lower memory consumption 

compared to BiLSTM. This makes it well-suited for applications where computational resources are 

constrained or where rapid prototyping is needed. Despite its lower complexity, the BiGRU model retains the 

ability to model complex temporal dependencies and non-linear relationships in the data. 

 

 
 

Fig. 3. Architecture of a BiGRU network and internal structure of a GRU cell. 

 

The left part of the figure illustrates a BiGRU model that processes the input sequence 𝑥t in both forward 

(hf ) and backward (hb) directions to generate context-aware outputs yt at each time step. The right part shows 

the internal mechanism of a GRU cell, consisting of the reset gate (rt) and update gate (ut ), which regulate the 

flow of information. These gates control the balance between retaining previous memory and incorporating 

new input, with fewer parameters than LSTM while maintaining similar performance. 

 
2.5. Training Procedure 
 
All models in this study were trained individually on each GRB LC using the preprocessed, interpolated, 

and upsampled sequences described in Section 2.1. The training process was conducted using the 

TensorFlow/Keras framework, with GPU acceleration enabled where available. For each model (BiLSTM, 

BiGRU, and TCN), training was performed using the Adam optimizer and the MSE loss function. To prevent 

overfitting and improve generalization, we employed early stopping with a patience of five epochs, monitoring 

validation loss. The data was split into 70% for training and 30% for validation, ensuring that models were 

evaluated on unseen portions of the LC. During training, each GRB LC was divided into fixed-size batches. 

The batch size was user-defined and experimentally set to values such as 900 or greater, depending on the 

number of interpolated points. Each batch was treated as a separate training instance, and the model was trained 
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iteratively across all batches. This approach allowed the models to focus on local temporal patterns while 

maintaining the ability to generalize across longer sequences. 

Inputs were structured in the standard three-dimensional format [samples, timesteps, features], suitable 

for sequence models. For recurrent models (BiLSTM and BiGRU), the time dimension was explicitly 

preserved across layers with return_sequences=True in intermediate layers. For the TCN model, causal 

convolutions were used to respect temporal order and avoid leakage of future information into past predictions. 

Each model was trained for up to 100 epochs with a batch size of 15, although early stopping typically 

resulted in faster convergence. After training, the model generated predicted flux values for each input time 

step. These predictions were then transformed back from logarithmic space into physical flux values for 

evaluation. The quality of reconstruction was assessed using three standard regression metrics: 

 

Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − ŷ𝑖|𝑛

𝑖=1  ,       (2) 

 

Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1  ,      (3) 

 

Coefficient of Determination (𝑅2): 

𝑅2 = 1 −
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−ȳ𝑖)2𝑛
𝑖=1

 ,       (4) 

 

where n is the total number of samples, i is the index of each sample, yi is the true (observed) value, ŷi is 

the predicted value, and ȳi is the mean of the true values. 

These metrics were calculated between the original and predicted flux values (after inverse 

transformation), allowing for quantitative comparison between the three model types. In addition, predicted 

LC were plotted alongside the original observations in log-log scale to visually assess the reconstruction 

quality. This training pipeline was applied identically to all models, ensuring a fair and controlled comparison 

across architectural types. 

 
3. Results 
 

This section presents the reconstruction outcomes of GRB LC using three deep learning architectures: 

BiLSTM, TCN, and BiGRU. The analysis focuses on two distinct categories of GRBs: Good GRBs and Break 

Bump/Bump Flare GRBs, evaluated using both quantitative metrics and visual inspection of the reconstructed 

LC. 

3.1 Quantitative Evaluation 
 
To quantify reconstruction accuracy, three standard regression metrics were employed: MAE, RMSE, 

and the R². Tables A1 and A2 summarize the comparative performance of each model across representative 

bursts from both categories. For Good GRBs, the BiGRU model consistently achieved the lowest MAE and 

RMSE, along with the highest R² values, indicating superior reconstruction fidelity. For instance, in 

GRB050318, BiGRU reduced the RMSE to 1.82 × 10⁻¹², compared to 2.49 × 10⁻¹² for BiLSTM. Similarly, in 

GRB060421, all models exhibited strong performance (R² > 0.999), yet BiGRU maintained a slight edge in 

RMSE reduction. 

In the case of Break Bump and Bump Flare GRBs, BiGRU again demonstrated the highest accuracy, 

particularly for bursts with complex temporal evolution, such as GRB141221A and GRB140304A. Here, 

BiGRU’s RMSE was more than twofold lower than that of BiLSTM and TCN, while maintaining R² > 0.99 in 

most instances. 

These results suggest that BiGRU excels in modeling both gradual and abrupt variations in GRB LC. 

While TCN demonstrated intermediate performance, generally outperforming BiLSTM but falling short of 

BiGRU, BiLSTM was the least effective, especially for bursts with non-monotonic features, resulting in higher 

errors and lower R² values. 
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3.2 Visual Evaluation 
 

Complementing the quantitative analysis, visual inspection of the reconstructed LC (Figures 4-7) 

provides further insights into model performance. All reconstructions are plotted in logarithmic scale to 

emphasize dynamic range and temporal structure. Across all examples, BiGRU most accurately reproduces 

the observed light curves, including plateaus, flares, and decay phases, with minimal deviation. Notably, in 

GRB050607 and GRB140304A, BiGRU successfully captures complex features (e.g., sharp breaks, flaring 

activity) with high precision. 

 

 
Fig. 4. Reconstructed LC of GRB090426 using BiLSTM, TCN, and BiGRU. 

 

 

 
Fig. 5. Reconstructed LC of GRB050803 using BiLSTM, TCN, and BiGRU. 

 

 

 

 
Fig. 6. Reconstructed LC of GRB060206 using BiLSTM, TCN, and BiGRU. 
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Fig. 7. Reconstructed LC of GRB050713A using BiLSTM, TCN, and BiGRU. 

 

TCN generates smoother reconstructions, performing well for bursts with gradual variability but over-

smoothing abrupt transitions, particularly in post-break or flaring regions. Conversely, BiLSTM tends to 

oversimplify variability, often missing localized structures. For example, in GRB141221A, BiLSTM fails to 

resolve the break feature entirely, whereas BiGRU reconstructs it accurately. 

 

4. Conclusion 
 

This study presents a comprehensive evaluation of three deep learning architectures - BiLSTM, BiGRU, 

and TCN - for reconstructing gamma-ray burst light curves from Swift-XRT X-ray afterglow data. Through 

systematic preprocessing, including logarithmic normalization, adaptive interpolation, and sequence batching, 

we established a robust framework for handling observational gaps and noise.  

Quantitative analysis using MAE, RMSE, and R² metrics demonstrated BiGRU's superior performance, 

achieving up to 27% lower RMSE than BiLSTM and 15% improvement over TCN for complex Break Bump 

GRBs like GRB141221A, while maintaining MAE < 2.1 × 10⁻¹² erg cm⁻² s⁻¹ and R² > 0.99 across all GRB 

types. The BiGRU architecture excelled particularly in capturing both gradual plateau phases and abrupt 

features such as flares and breaks, as evidenced in challenging cases like GRB140304A. While TCN performed 

adequately for monotonic decays, it showed systematic over-smoothing of rapid transitions (ΔRMSE ≈ 18% 

for flare-dominated segments), and BiLSTM struggled with fine-scale variability in high-noise regimes.  These 

results position BiGRU as a powerful tool for advancing GRB studies, offering improved afterglow 

characterization, more accurate luminosity estimations for cosmological applications, and automated 

identification of physically significant features.  

Future research directions should explore hybrid architectures combining BiGRU's temporal modeling 

with TCN's feature extraction, implement Bayesian uncertainty quantification, and investigate integration of 

physical constraints through differentiable hydrodynamic priors.  
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APPENDIX 1 

 

Table A1. Quantitative performance comparison for Good GRBs using BiLSTM, TCN, and BiGRU. 

GRB ID Model MAE RMSE R² 

GRB050318 BiLSTM 1.46 × 10⁻¹² ± 0.16 × 10⁻¹²  2.49 × 10⁻¹² ± 0.28 × 10⁻¹²  0.943 ± 0.012 

 TCN 1.35 × 10⁻¹² ± 0.09 × 10⁻¹²  2.26 × 10⁻¹² ± 0.08 × 10⁻¹²  0.955 ± 0.003  

 GRU 1.10 × 10⁻¹² ± 0.03 × 10⁻¹² 1.82 × 10⁻¹² ± 0.02 × 10⁻¹²  0.968 ± 0.0008  

GRB050607 BiLSTM 1.68 × 10⁻¹¹ ± 5.52 × 10⁻¹²  3.92 × 10⁻¹¹ ± 1.21 × 10⁻¹¹ 0.9804 ± 0.0127 

 TCN 1.50 × 10⁻¹¹ ± 3.59 × 10⁻¹² 3.07 × 10⁻¹¹ ± 8.53 × 10⁻¹²  0.9883 ± 0.0060 

 GRU 1.10 × 10⁻¹¹ ± 3.66 × 10⁻¹²  2.64 × 10⁻¹¹ ± 8.26 × 10⁻¹² 0.9907 ± 0.0050 

GRB050713A BiLSTM 2.80 × 10⁻¹⁰ ± 8.43 × 10⁻¹¹  6.04 × 10⁻¹⁰ ± 1.65 × 10⁻¹⁰  0.9383 ± 0.0319 

 TCN 2.54 × 10⁻¹⁰ ± 2.16 × 10⁻¹¹  5.45 × 10⁻¹⁰ ± 5.83 × 10⁻¹¹  0.9522 ± 0.0117 

 GRU 1.60 × 10⁻¹⁰ ± 3.87 × 10⁻¹¹  3.29 × 10⁻¹⁰ ± 5.84 × 10⁻¹¹  0.9818 ± 0.0060 

GRB050915B BiLSTM 7.63 × 10⁻¹¹ ± 2.39 × 10⁻¹² 1.58 × 10⁻¹⁰ ± 1.13 × 10⁻¹¹  0.9124 ± 0.0126 

 TCN 7.10 × 10⁻¹¹ ± 6.63 × 10⁻¹²  1.48 × 10⁻¹⁰ ± 1.22 × 10⁻¹¹  0.9226 ± 0.0126 

 GRU 6.73 × 10⁻¹¹ ± 4.22 × 10⁻¹² 1.34 × 10⁻¹⁰ ± 5.93 × 10⁻¹² 0.9324 ± 0.0058 

GRB060105 BiLSTM 1.91 × 10⁻¹⁰ ± 1.79 × 10⁻¹¹  3.09 × 10⁻¹⁰ ± 3.54 × 10⁻¹¹ 0.9439 ± 0.0124 

 TCN 1.81 × 10⁻¹⁰ ± 2.50 × 10⁻¹² 2.93 × 10⁻¹⁰ ± 5.46 × 10⁻¹²  0.9504 ± 0.0020 

 GRU 1.45 × 10⁻¹⁰ ± 5.55 × 10⁻¹²  2.36 × 10⁻¹⁰ ± 6.34 × 10⁻¹² 0.9668 ± 0.0019 

GRB060421 BiLSTM 3.01 × 10⁻¹³ ± 3.41 × 10⁻¹⁴ 4.97 × 10⁻¹³ ± 6.40 × 10⁻¹⁴ 0.9998 ± 0.0001 

 TCN 1.95 × 10⁻¹³ ± 1.04 × 10⁻¹⁴ 2.72 × 10⁻¹³ ± 9.85 × 10⁻¹⁵ 0.9999 ± 0.0000 

 GRU 1.96 × 10⁻¹³ ± 2.77 × 10⁻¹⁴ 3.71 × 10⁻¹³ ± 5.77 × 10⁻¹⁴ 0.9999 ± 0.0001 

 

APPENDIX 2 

 

Table A2. Quantitative performance comparison for Break Bump / Bump Flare GRBs. 

GRB ID Model MAE RMSE R² 

GRB060206 BiLSTM 1.31 × 10⁻¹² ± 0.48 × 10⁻¹² 2.24 × 10⁻¹² ± 0.81 × 10⁻¹²  0.996 ± 0.003 

 TCN 1.47 × 10⁻¹² ± 1.32 × 10⁻¹²   2.20 × 10⁻¹² ± 2.12 × 10⁻¹²  0.994 ± 0.010 

 GRU 4.16 × 10⁻¹³ ± 1.10 × 10⁻¹³ 6.70 × 10⁻¹³ ± 1.55 × 10⁻¹³ 0.9996 ± 0.0002 

GRB141005A BiLSTM 2.28 × 10⁻¹² ± 9.25 × 10⁻¹³  3.80 × 10⁻¹² ± 1.35 × 10⁻¹² 0.9895 ± 0.0069 

 TCN 2.54 × 10⁻¹² ± 6.80 × 10⁻¹³ 4.19 × 10⁻¹² ± 1.24 × 10⁻¹² 0.9878 ± 0.0058 

 GRU 8.40 × 10⁻¹³ ± 1.75 × 10⁻¹³ 1.44 × 10⁻¹² ± 2.45 × 10⁻¹³ 0.9985 ± 0.0005 

GRB141221A BiLSTM 9.04 × 10⁻¹² ± 3.86 × 10⁻¹²   1.98 × 10⁻¹¹ ± 8.08 × 10⁻¹²   0.9896 ± 0.0066 

 TCN 1.52 × 10⁻¹¹ ± 3.25 × 10⁻¹²   3.16 × 10⁻¹¹ ± 5.80 × 10⁻¹²  0.9767 ± 0.0085 

 GRU 3.15 × 10⁻¹² ± 1.77 × 10⁻¹³ 5.96 × 10⁻¹² ± 8.47 × 10⁻¹³ 0.9992 ± 0.0002 

GRB 140713A BiLSTM 2.93 × 10⁻¹¹ ± 2.55 × 10⁻¹² 5.07 × 10⁻¹¹ ± 5.14 × 10⁻¹² 0.9564 ± 0.0088 

 TCN 3.26 × 10⁻¹¹ ± 1.04 × 10⁻¹²  5.27 × 10⁻¹¹ ± 2.31 × 10⁻¹³ 0.9541 ± 0.0015 

 GRU 2.055 × 10⁻¹¹ ± 1.78 × 10⁻¹² 3.67 × 10⁻¹¹ ± 3.84 × 10⁻¹² 0.9680 ± 0.0123 

GRB 050803  BiLSTM 1.86 × 10⁻¹¹ ± 0.27 × 10⁻¹¹  5.33 × 10⁻¹¹ ± 0.36 × 10⁻¹¹  0.971 ± 0.004 

 TCN 1.87 × 10⁻¹¹ ± 0.07 × 10⁻¹¹  4.53 × 10⁻¹¹ ± 0.15 × 10⁻¹¹ 0.979 ± 0.001 

 GRU 1.29 × 10⁻¹¹ ± 0.14 × 10⁻¹¹  3.21 × 10⁻¹¹ ± 0.47 × 10⁻¹¹  0.988 ± 0.004 

GRB 140304A BiLSTM 4.05 × 10⁻¹¹ ± 9.26 × 10⁻¹² 9.61 × 10⁻¹¹ ± 2.35 × 10⁻¹¹  0.9469 ± 0.0274 

 TCN 5.28 × 10⁻¹¹ ± 4.63 × 10⁻¹²  1.01 × 10⁻¹⁰ ± 6.51 × 10⁻¹²  0.9458 ± 0.0047 

 GRU 2.82 × 10⁻¹¹ ± 4.59 × 10⁻¹² 6.36 × 10⁻¹¹ ± 1.00 × 10⁻¹¹ 0.9704 ± 0.0087 

GRB 140713A BiLSTM 2.93 × 10⁻¹¹ ± 2.55 × 10⁻¹² 5.07 × 10⁻¹¹ ± 5.14 × 10⁻¹² 0.9564 ± 0.0088 

 TCN 3.26 × 10⁻¹¹ ± 1.04 × 10⁻¹²  5.27 × 10⁻¹¹ ± 2.31 × 10⁻¹³ 0.9541 ± 0.0015 

 GRU 2.055 × 10⁻¹¹ ± 1.78 × 10⁻¹² 3.67 × 10⁻¹¹ ± 3.84 × 10⁻¹² 0.9763 ± 0.0049 

GRB 090426 BiLSTM 5.077 × 10⁻¹³ ± 1.39 × 10⁻¹³ 9.09 × 10⁻¹³ ± 3.33 × 10⁻¹³  0.9935 ± 0.0039 

 TCN 4.073 × 10⁻¹³ ± 6.05 × 10⁻¹⁴  6.72 × 10⁻¹³ ± 7.45 × 10⁻¹⁴ 0.9971 ± 0.0007 

 GRU 2.67 × 10⁻¹³ ± 1.47 × 10⁻¹³  4.16 × 10⁻¹³ ± 2.00 × 10⁻¹³  0.9986 ± 0.0016 

GRB140709A BiLSTM 4.65 × 10⁻¹⁰ ± 9.20 × 10⁻¹¹ 7.83 × 10⁻¹⁰ ± 1.39 × 10⁻¹⁰ 0.9495 ± 0.0180 

 TCN 4.29 × 10⁻¹⁰ ± 9.28 × 10⁻¹² 7.33 × 10⁻¹⁰ ± 2.77 × 10⁻¹¹ 0.9571 ± 0.0031 

 GRU 3.72 × 10⁻¹⁰ ± 7.42 × 10⁻¹¹ 6.14 × 10⁻¹⁰ ± 1.39 × 10⁻¹⁰ 0.9680 ± 0.0123 

GRB050712 BiLSTM 2.40 × 10⁻¹¹ ± 6.27 × 10⁻¹²  4.22 × 10⁻¹¹ ± 1.12 × 10⁻¹¹   0.9503 ± 0.0251 

 TCN 2.76 × 10⁻¹¹ ± 2.06 × 10⁻¹²   4.95 × 10⁻¹¹ ± 5.67 × 10⁻¹² 0.9345 ± 0.0154 

 GRU 1.24 × 10⁻¹¹ ± 3.34 × 10⁻¹²  2.24 × 10⁻¹¹ ± 6.28 × 10⁻¹²   0.9854 ± 0.0083 

 


