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Abstract. Gamma-ray bursts represent some of the most energetic and complex phenomena in the universe,
characterized by highly variable light curves that often contain observational gaps. Reconstructing these light
curves is essential for gaining deeper insight into the physical processes driving such events. This study proposes a
machine learning-based framework for the reconstruction of gamma-ray burst light curves, focusing specifically
on the plateau phase observed in X-ray data. The analysis compares the performance of three sequential modeling
approaches: a bidirectional recurrent neural network, a gated recurrent architecture, and a convolutional model
designed for temporal data. The findings of this study indicate that the Bidirectional Gated Recurrent Unit model
showed the best predictive accuracy among the evaluated models across all gamma-ray burst types, as measured
by Mean Absolute Error, Root Mean Square Error, and Coefficient of Determination. Notably, Bidirectional Gated
Recurrent Unit exhibited enhanced capability in modeling both gradual plateau phases and abrupt transient
features, including flares and breaks, particularly in complex light-curve scenarios.
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1. Introduction

Gamma-ray bursts (GRBs) are among the most energetic and transient phenomena in the Universe,
characterized by brief flashes of high-energy photons, typically peaking above ~0.1 MeV [1]. These events
exhibit a remarkable diversity in duration, ranging from milliseconds to several minutes, as well as highly
variable temporal and spectral structures, which pose significant challenges for theoretical modeling. Over the
past decade, the field of GRB research has undergone a rapid transformation, evolving from a specialized area
of high-energy astrophysics into a major domain of observational cosmology and astrophysics. This progress
has been driven by a succession of space missions that enabled both accurate localization and extensive multi-
wavelength follow-up of GRBs.

The Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory
provided strong evidence for the isotropic sky distribution of GRBs, implying an extragalactic origin [2]. The
Swift Burst Alert Telescope (BAT) [3] detects prompt emission, and the follow-up afterglow is detected using
the X-ray [4]. The subsequent BeppoSAX mission enabled the first detections of X-ray afterglows and accurate
source localization, which led to the discovery of long-wavelength counterparts and host galaxies [5]. These
breakthroughs were further advanced by the High Energy Transient Explorer (HETE-I11) [6] and complemented
by extensive ground-based observations in the optical, infrared, and radio bands.

The detection of long-lived afterglows has enabled in-depth studies of the circumburst environment and
provided compelling evidence for collimated relativistic outflows. Given their extreme luminosities and
detectability at high redshifts [8-10], GRBs serve as powerful probes of the distant Universe [11-13]. They
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offer a unique opportunity to investigate key aspects of cosmology, including the expansion history and the
nature of dark energy, the cosmic star formation rate, the timing and processes of reionization, as well as the
chemical enrichment of the interstellar and intergalactic media over cosmic time.

Consequently, GRBs are not only key astrophysical phenomena but also valuable tools for probing the
Universe on cosmological scales. To fully utilize their potential, precise modeling of their light curves (LCs)
is essential. In this context, machine learning (ML) has become an increasingly important tool in astrophysics
[14-16], with successful applications in different areas of astronomy and other fields [17-22]. These
advancements have led to a growing interest in using ML for GRB LCs reconstruction.

The t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm has demonstrated stable clustering
of GRBs even with partial data removal, highlighting its robustness for dynamic or incomplete datasets [23].
ML has also proven effective in localizing previously unidentified GRBs, revealing uniform sky distributions
and suggesting potential magnetar associations [24]. Clustering analyses of Fermi GRBs using spectral features
have identified four consistent classes with distinct o and Epeak characteristics, enhancing our understanding
of GRB subtypes [25]. Optimization-based modeling has successfully reproduced GRB-SN light curves,
supporting magnetar-driven scenarios with physically plausible parameters [26]. Automatic Gaussian Mixture
Model (AutoGMM) applied to t-SNE embeddings further revealed coherent density structures, validating the
use of unsupervised clustering in GRB mapping [27]. Simulated GRB LCs generated with ML techniques have
been shown to statistically match real data, confirming the reliability of data-driven models [28]. Large-scale
classification using Uniform Manifold Approximation and Projection (UMAP), t-SNE, and K-means
consistently separates Fermi GRBs into two main groups across different parameter spaces [29]. A similar
two-cluster structure was observed in a study linking GRB groupings to physical origins, such as compact
mergers and collapsars, rather than traditional duration-based classification [30]. These studies collectively
demonstrate that ML not only enhances GRB classification but also offers a promising pathway for
reconstructing their complex LC.

Recently, Dainotti M. G. et al. [31] applied stochastic reconstruction to GRB LC using Willingale (WQ7)
and broken power-law (BPL) models, along with Gaussian processes. At 10% noise, uncertainties in key
parameters-plateau end time, flux, and post-plateau decay index were reduced by up to 43.9%, enhancing the
accuracy of GRB-based cosmological studies. Sourav S. et. al. [9] applied a novel approach using bidirectional
LSTM proposed for GRB LC reconstruction to address gaps in observational data. Compared to traditional
methods (W07, BPL, and their Gaussian Process variants), the Bidirectional Long Short-Term Memory
(BiLSTM) model generally produced smoother reconstructions but showed a smaller decrease in flux
uncertainty.

R. Falco et. al. [32] presents a quantitative analysis of GRB LCs performed using Principal Component
Analysis (PCA) and t-SNE for dimensionality reduction and visualization. Synthetic LC were generated with
properties closely matching real ones, showing good overlap in the embedded space. The similarity was further
confirmed by statistical comparisons, with L2-norm and Wasserstein distances between histograms of real and
synthetic LCs equal to 5.3 and 0.2, respectively. Building upon these recent advancements, the present work
introduces a ML-based framework for the reconstruction of GRB LC, focusing on the plateau phase observed
in X-ray data. Our approach explores and compares the performance of three distinct architectures: BiLSTM,
Bidirectional Gated Recurrent Unit (BiGRU), and Temporal Convolutional Network (TCN). These models are
well-suited for sequential data with missing values, enabling more robust reconstruction of LC and improved
capture of temporal patterns.

The remainder of this paper is organized as follows: Section 2 describes the data preparation and
preprocessing steps; Section 3 outlines the architecture and training process for each ML model; Section 4
presents the evaluation of metrics and experimental results; and Section 5 concludes with a summary.

2. Methodology
2.1 Data Collection and Preprocessing

The dataset used in this study consists of GRB LC obtained from the publicly available Swift XRT
archive. Each LC was extracted from raw Flexible Image Transport System (FITS) files by extracting key
observational parameters, including the observation time, flux, and flux uncertainties. To ensure consistency
across the dataset, non-informative or incomplete entries were excluded during the initial data cleaning phase.
To restore the temporal order of events, all LC were sorted in ascending order of observation time.
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Subsequently, time values were normalized by dividing by 102, a transformation that standardizes temporal
scales and facilitates stable training across models.

Given the wide dynamic range of GRB flux values, both the flux and its associated uncertainty were
transformed into logarithmic space using the formula:

Fi) =n(3)+1, €y

where (x) - is the flux value and (a) - denotes the minimum non-zero flux in the given sequence. This
transformation improves the numerical stability of the learning process by compressing large magnitudes and
preserving fine variations in small-scale signals - a critical requirement for deep neural architectures sensitive
to input distributions.

To address the inherent sparsity and temporal irregularity of GRB observations, a dense interpolation
strategy was applied. Specifically, 19 equally spaced points were interpolated between each pair of consecutive
observations. This approach significantly increases the temporal resolution of each sequence and provides
more informative context for time-dependent models, such as RNNs and TCNs. The resulting sequences were
segmented into fixed-size batches, ensuring uniform input dimensions for training. To prevent information
loss due to short sequences, each batch was upsampled via repetition until the required length was met. This
strategy enables the model to learn consistent temporal patterns across samples and mitigates overfitting,
particularly in the case of limited observational windows. The interpolation strategy, normalization by dividing
time by 102, and logarithmic transformation of flux values were adopted following the approach of Sourav S.
et al. [9]. These preprocessing steps are essential for preparing the input data for sequential architectures,
including Bidirectional Gated Recurrent Unit (GRU), Bidirectional LSTM, and TCN, all of which rely on
structured temporal input for effective reconstruction of GRB LC.

2.2. Bidirectional Long Short-Term Memory Architecture

BiLSTM model was selected as a baseline due to its proven effectiveness in modeling complex temporal
dependencies, particularly in irregular and noisy time series. BiLSTM architecture is well-suited for capturing
both forward and backward temporal contexts, which is especially valuable when reconstructing GRB LC with
observational gaps. The BiLSTM network extends the standard LSTM architecture by incorporating two
parallel recurrent layers that process the input sequence in both forward and backward directions (Fig. 1). This
bidirectional processing enables the model to capture context from both past and future time steps, improving
its ability to learn temporal dependencies. The original BiLSTM architecture was introduced by Schuster and
Paliwal [33]. Our implementation consists of five stacked BiLSTM layers, each incorporating internal memory
mechanisms that allow the network to retain information across long sequences. The first four layers are
configured with return_sequences=True to preserve the temporal structure throughout the network’s depth.
This design enables hierarchical feature extraction across multiple time scales. The final BiLSTM layer outputs
a fixed-length representation, which is passed to a fully connected dense layer with a Rectified Linear Unit
(ReLU) activation function. This layer maps the learned sequence representation to a single flux prediction
value. Each BiLSTM layer comprises 100 hidden units, and the model is trained using the Adam optimizer
with mean squared error (MSE) as the loss function. To prevent overfitting, early stopping is applied based on
validation loss.

Fig. 1. Architecture of a BILSTM network and the internal structure of an LSTM cell.
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Unlike classical regression-based approaches such as the broken power-law (BPL) model - which
imposes a predefined parametric form - the BiLSTM model provides greater flexibility in capturing the non-
linear and non-stationary nature of GRB LC. It is capable of modeling rapid flux variations, plateau phases,
and flaring behavior without requiring strict functional assumptions. The left part of the figure illustrates a
BiLSTM model that processes the input sequence in both forward (h") and backward (h®) directions to generate
context-aware outputs at each time step. The right part shows the internal mechanism of an LSTM cell, which
includes the input, forget, and output gates. These gates control the flow of information based on the current
input x; and the previous hidden state h:.1, maintaining a memory cell state c:that enables long-term dependency
learning.

2.3. Temporal Convolutional Network Architecture

TCN architecture was selected as a non-recurrent alternative for sequence modeling, offering several
advantages such as parallel computation, stable gradients, and effective long-range dependency capture
through dilated convolutions. TCNs are particularly useful in time-series tasks where causal relationships must
be preserved, and memory-efficient modeling is desirable. The TCN framework evaluated by Bai et al. [33]
demonstrated strong performance in sequence modeling tasks compared to both LSTM and GRU architectures.

Our implementation includes three 1D convolutional layers with causal padding (Fig. 2) to ensure that
predictions at time ¢ do not depend on future inputs. Each layer uses 64 filters and a kernel size of 5, with
RelLU activation applied after each convolution. To enable the model to capture longer temporal contexts
without increasing kernel size, we employ increasing dilation rates of 1, 2, and 4 respectively across the three
convolutional layers. This expands the receptive field, allowing the model to access information from broader
time ranges. Following the convolutional layers, the output is flattened and passed to a fully connected dense
layer, which outputs a single flux prediction per input. As with the BiLSTM model, the TCN is trained using
the Adam optimizer and MSE as the loss function. Early stopping is employed to prevent overfitting, based on
validation loss monitoring.

Unlike recurrent models, TCNs do not rely on internal memory states, which makes them less sensitive
to vanishing gradients and more efficient for parallelization during training. Furthermore, their ability to handle
sequences of varying lengths without explicit unrolling makes them attractive for modeling astrophysical
signals with nonuniform sampling. In the context of GRB LC reconstruction, TCNs offer a unique perspective:
they capture local and global temporal patterns via stacked convolutional filters while preserving causal
dependencies. Their structural simplicity and training efficiency position them as a promising alternative to
recurrent networks, particularly when reconstruction speed and computational cost are critical considerations.
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Fig. 2. Architecture of a TCN and internal structure of a residual block.

The left part of the figure illustrates a stacked TCN model composed of three residual blocks, which
process the input sequence x to produce the output y. The right part shows the internal structure of a single
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residual block, featuring two layers of dilated causal convolutions, each followed by weight normalization,
ReLU activation, and dropout. A 1x1 convolution is applied to the input to ensure dimensional compatibility
before the residual connection is added. This design enables efficient modeling of long-range dependencies in
sequential data.

2.4. Bidirectional Gated Recurrent Unit Architecture

GRU is a simplified recurrent neural architecture proposed by Cho et al. [34] as an alternative to the
LSTM. GRUs simplify the memory gating mechanism of LSTMs while maintaining the ability to capture long-
term dependencies in temporal data. When combined with a bidirectional architecture, GRUs become
particularly effective at modeling sequences where contextual information from both past and future is relevant
- a key characteristic of GRB LC with gaps and irregularities.

The BiGRU architecture used in this study consists of two stacked bidirectional GRU layers (Fig. 3). The
first layer is configured with return_sequences=True to allow the second GRU layer to process temporal
dynamics across the full sequence. Each GRU layer contains 64 hidden units, and both layers are wrapped in
Keras’s Bidirectional wrapper to process input sequences in forward and backward directions. The output of
the second GRU layer is fed into a dense layer with a linear activation to produce the final flux prediction.

The model is trained using the Adam optimizer and MSE loss function. An early stopping mechanism is
applied based on validation loss to ensure optimal convergence and to avoid overfitting. Due to its simplified
gating and reduced computational cost, BIiGRU offers faster training and lower memory consumption
compared to BIiLSTM. This makes it well-suited for applications where computational resources are
constrained or where rapid prototyping is needed. Despite its lower complexity, the BiGRU model retains the
ability to model complex temporal dependencies and non-linear relationships in the data.

Fig. 3. Architecture of a BiIGRU network and internal structure of a GRU cell.

The left part of the figure illustrates a BiIGRU model that processes the input sequence x. in both forward
(h") and backward (h®) directions to generate context-aware outputs y: at each time step. The right part shows
the internal mechanism of a GRU cell, consisting of the reset gate (r)) and update gate (u'), which regulate the
flow of information. These gates control the balance between retaining previous memory and incorporating
new input, with fewer parameters than LSTM while maintaining similar performance.

2.5. Training Procedure

All models in this study were trained individually on each GRB LC using the preprocessed, interpolated,
and upsampled sequences described in Section 2.1. The training process was conducted using the
TensorFlow/Keras framework, with GPU acceleration enabled where available. For each model (BiLSTM,
BiGRU, and TCN), training was performed using the Adam optimizer and the MSE loss function. To prevent
overfitting and improve generalization, we employed early stopping with a patience of five epochs, monitoring
validation loss. The data was split into 70% for training and 30% for validation, ensuring that models were
evaluated on unseen portions of the LC. During training, each GRB LC was divided into fixed-size batches.
The batch size was user-defined and experimentally set to values such as 900 or greater, depending on the
number of interpolated points. Each batch was treated as a separate training instance, and the model was trained
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iteratively across all batches. This approach allowed the models to focus on local temporal patterns while
maintaining the ability to generalize across longer sequences.

Inputs were structured in the standard three-dimensional format [samples, timesteps, features], suitable
for sequence models. For recurrent models (BiLSTM and BiGRU), the time dimension was explicitly
preserved across layers with return_sequences=True in intermediate layers. For the TCN model, causal
convolutions were used to respect temporal order and avoid leakage of future information into past predictions.

Each model was trained for up to 100 epochs with a batch size of 15, although early stopping typically
resulted in faster convergence. After training, the model generated predicted flux values for each input time
step. These predictions were then transformed back from logarithmic space into physical flux values for
evaluation. The quality of reconstruction was assessed using three standard regression metrics:

Mean Absolute Error (MAE):

MAE = =¥ |y = 9l 2
Root Mean Square Error (RMSE):

RMSE = \/%Z?ﬂ(yi ~ 9%, (3)
Coefficient of Determination (R?):

R =1-FO @

where n is the total number of samples, i is the index of each sample, y; is the true (observed) value, Ji is
the predicted value, and ¥ is the mean of the true values.

These metrics were calculated between the original and predicted flux values (after inverse
transformation), allowing for quantitative comparison between the three model types. In addition, predicted
LC were plotted alongside the original observations in log-log scale to visually assess the reconstruction
guality. This training pipeline was applied identically to all models, ensuring a fair and controlled comparison
across architectural types.

3. Results

This section presents the reconstruction outcomes of GRB LC using three deep learning architectures:
BiLSTM, TCN, and BiGRU. The analysis focuses on two distinct categories of GRBs: Good GRBs and Break
Bump/Bump Flare GRBs, evaluated using both quantitative metrics and visual inspection of the reconstructed
LC.

3.1 Quantitative Evaluation

To quantify reconstruction accuracy, three standard regression metrics were employed: MAE, RMSE,
and the R2. Tables A1 and A2 summarize the comparative performance of each model across representative
bursts from both categories. For Good GRBs, the BiGRU model consistently achieved the lowest MAE and
RMSE, along with the highest R2 values, indicating superior reconstruction fidelity. For instance, in
GRBO050318, BiGRU reduced the RMSE to 1.82 x 107'2, compared to 2.49 x 10-'2 for BiLSTM. Similarly, in
GRBO060421, all models exhibited strong performance (R? > 0.999), yet BIGRU maintained a slight edge in
RMSE reduction.

In the case of Break Bump and Bump Flare GRBs, BiGRU again demonstrated the highest accuracy,
particularly for bursts with complex temporal evolution, such as GRB141221A and GRB140304A. Here,
BiGRU’s RMSE was more than twofold lower than that of BiLSTM and TCN, while maintaining R >0.99 in
most instances.

These results suggest that BiGRU excels in modeling both gradual and abrupt variations in GRB LC.
While TCN demonstrated intermediate performance, generally outperforming BiLSTM but falling short of
BiGRU, BiLSTM was the least effective, especially for bursts with non-monotonic features, resulting in higher
errors and lower R? values.
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3.2 Visual Evaluation

Complementing the quantitative analysis, visual inspection of the reconstructed LC (Figures 4-7)
provides further insights into model performance. All reconstructions are plotted in logarithmic scale to
emphasize dynamic range and temporal structure. Across all examples, BiGRU most accurately reproduces
the observed light curves, including plateaus, flares, and decay phases, with minimal deviation. Notably, in

GRB050607 and GRB140304A, BiGRU successfully captures complex features (e.g., sharp breaks, flaring
activity) with high precision.
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Fig. 4. Reconstructed LC of GRB090426 using BiLSTM, TCN, and BiGRU.
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Fig. 7. Reconstructed LC of GRB050713A using BiLSTM, TCN, and BiGRU.

TCN generates smoother reconstructions, performing well for bursts with gradual variability but over-
smoothing abrupt transitions, particularly in post-break or flaring regions. Conversely, BiLSTM tends to
oversimplify variability, often missing localized structures. For example, in GRB141221A, BiLSTM fails to
resolve the break feature entirely, whereas BiGRU reconstructs it accurately.

4. Conclusion

This study presents a comprehensive evaluation of three deep learning architectures - BiLSTM, BiGRU,
and TCN - for reconstructing gamma-ray burst light curves from Swift-XRT X-ray afterglow data. Through
systematic preprocessing, including logarithmic normalization, adaptive interpolation, and sequence batching,
we established a robust framework for handling observational gaps and noise.

Quantitative analysis using MAE, RMSE, and R2 metrics demonstrated BiGRU's superior performance,
achieving up to 27% lower RMSE than BiLSTM and 15% improvement over TCN for complex Break Bump
GRBs like GRB141221A, while maintaining MAE < 2.1 x 1072 erg cm™ s™! and R2 > 0.99 across all GRB
types. The BiGRU architecture excelled particularly in capturing both gradual plateau phases and abrupt
features such as flares and breaks, as evidenced in challenging cases like GRB140304A. While TCN performed
adequately for monotonic decays, it showed systematic over-smoothing of rapid transitions (ARMSE =~ 18%
for flare-dominated segments), and BiLSTM struggled with fine-scale variability in high-noise regimes. These
results position BiGRU as a powerful tool for advancing GRB studies, offering improved afterglow
characterization, more accurate luminosity estimations for cosmological applications, and automated
identification of physically significant features.

Future research directions should explore hybrid architectures combining BiGRU's temporal modeling
with TCN's feature extraction, implement Bayesian uncertainty quantification, and investigate integration of
physical constraints through differentiable hydrodynamic priors.

Conflict of interest statement
The authors declare that they have no conflict of interest in relation to this research, whether financial, personal, authorship
or otherwise, that could affect the research and its results presented in this paper.

CRediT author statement

Zhunuskanov A., Akhmetali A.: Methodology, Data curation, Conceptualization; Sakan A.: Writing-original draft,
Visualization; Ussipov N., Zaidyn M.: Writing — review & editing, Validation, Supervision; Zhunuskanov A., Akhmetali
A.: Formal analysis; Investigation. The final manuscript was read and approved by all authors.

Funding
This research has been funded by the Science Committee of the Ministry of Science and Higher Education of the
Republic of Kazakhstan (Grant AP19674715).



140 Eurasian Physical Technical Journal, 2025, 22, 4(54) ISSN 1811-1165; e-ISSN 2413-2179

Acknowledgments
We would like to express our sincerest gratitude to the Department of Electronics and Astrophysics of the Al-Farabi
Kazakh National University for supporting this work by providing computing resources
(Faculty of Physics and Technology).

Reference

1 Kumar P., Zhang B. (2015) The physics of gamma-ray bursts & relativistic jets. Physics Reports, 561, 1-109.
https://doi.org/10.1016/j.physrep.2014.09.008.

2 Meegan C.A,, Fishman G.J., Wilson R.B., Paciesas W.S., Pendleton G.N., Horack J.M., Kouveliotou C. (1992)
Spatial distribution of y-ray bursts observed by BATSE. Nature, 355 (6356), 143-145. https://doi.org/10.1038/355143a0.

3 Barthelmy S.D., Chincarini G., Burrows D.N., Gehrels N., Covino S., Moretti A., Wijers R.A.M.J. (2005) An
origin for short y-ray bursts unassociated with current star formation. Nature, 438(7070), 994-996,
https://doi.org/10.1038/nature04392

4 Burrows D.N., Romano P., Falcone A., Kobayashi S., Zhang B., Moretti A., Gehrels N. (2005) Bright X-ray
flares in gamma-ray burst afterglows. Science, 309(5742), 1833-1835. https://doi.org/10.1126/science.1116168.

5 Boella G., Butler R. C., Perola G. C., Piro L., Scarsi L., Bleeker J. A. M. (1997) BeppoSAX, the wide band
mission for X-ray astronomy. Astronomy and Astrophysics Supplement Series, 122(2), 299-307.
https://doi.org/10.1051/a3s:1997136.

6 Ricker G.R., Vanderspek R.K. (2003) Gamma-ray burst and afterglow astronomy 2001: A workshop celebrating
the first year of the hete mission. In Gamma-Ray Burst and Afterglow Astronomy 2001: A Workshop Celebrating the First
Year of the HETE Mission, 662. https://doi.org/10.1051/0004-6361%3A200809709.

7  Willingale R., O’brien P.T., Oshorne J. P., Godet O., Page K. L., Goad M.R., Chincarini G. (2007) Testing the
standard fireball model of gamma-ray bursts using late X-ray afterglows measured by Swift. The Astrophysical Journal,
662(2), 1093. https://doi.org/10.1086/517989.

8 Zhang Z. B., Choi C.S. (2008) An analysis of the durations of Swift gamma-ray bursts. Astronomy &
Astrophysics, 484(2), 293-297. https://doi.org/10.1051/0004-6361:20079210.

9 Sourav S., Shukla A., Dwivedi R., Singh K. (2023) Predicting Missing Light Curves of Gamma-Ray Bursts with
Bidirectional-LSTM: An Approach for Enhanced Analysis. Available at: https://arxiv.org/abs/2310.02602.

10 WangF.,ZouY.C,, LiuF, LiaoB., LiuY., Chai Y., Xia L. (2020) A comprehensive statistical study of gamma-
ray bursts. The Astrophysical Journal, 893(1), 77. https://doi.org/10.48550/arXiv.1902.05489.

11 Abdikamalov E., Beniamini P. (2025) Reverse and forward shock afterglow emission from steep jets viewed
off-axis. Monthly Notices of the Royal Astronomical Society, 539(3), 2707-2717. https://doi.org/10.1093/mnras/staf649

12 Komesh T., Grossan B., Maksut Z., Abdikamalov E., Krugov M., Smoot G.F. (2023) Evolution of the afterglow
optical spectral shape of GRB 201015A in the first hour: evidence for dust destruction. Monthly Notices of the Royal
Astronomical Society, 520(4), 6104-6110. https://doi.org/10.1093/mnras/stad538

13 Gritsevich M., Castro-Tirado A. J., Kubé&nek P., Pandey S.B., Hiriart D. (Eds.) (2025). Early-time optical
spectral shape measurements of GRB 200925B. In VII Workshop on Robotic Autonomous Observatories (Revista
Mexicana de Astronomia y Astrofisica, Serie de Conferencias, 59, 109-113.
https://doi.org/10.22201/ia.14052059p.2025.59.20

14 Baron D. (2019) Machine learning in astronomy: A practical overview. arXiv preprint arXiv:1904.07248.
https://doi.org/10.48550/arXiv.1904.07248

15 Fluke C. J., Jacobs C. (2020) Surveying the reach and maturity of machine learning and artificial intelligence in
astronomy. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(2), e1349.
https://doi.org/10.48550/arXiv.1912.02934.

16 Zhang H., Wang J., Zhang Y., Du X., Wu H., Zhang T. (2023) Review of artificial intelligence applications in
astronomical data processing. Astronomical Techniques and Instruments, 1(1), 1-15. https://doi.org/10.61977/ati2024001.

17 Ussipov N., Zhanabaev Z., Almat A., Zaidyn M., Turlykozhayeva D., Akniyazova A., Namazbayev T. (2024)
Classification of Gravitational Waves from Black Hole-Neutron Star Mergers with Machine Learning. Journal of
Astronomy and Space Sciences, 41(3), 149-158. https://doi.org/10.5140/JASS.2024.41.3.149.

18 Akhmetali A., Namazbayev T., Subebekova G., Zaidyn M., Akniyazova A., Ashimov Y., Ussipov N. (2024)
Classification of Variable Star Light Curves with Convolutional Neural Network. Galaxies, 12(6), 75.
https://doi.org/10.3390/galaxies12060075.

19 Ussipov N., Akhtanov S., Zhanabaev Z., Turlykozhayeva D., Karibayev B., Namazbayev T., Tang X. (2024)
Automatic modulation classification for MIMO system based on the mutual information feature extraction. IEEE Access,
12, 68463-68470. https://doi.org/10.1109/ACCESS.2024.3400448.

20 Akhmetali A., Zhunuskanov A., Sakan A., Zaidyn M., Namazbayev T., Turlykozhayeva D., Ussipov N. (2025)
Luminis  Stellarum et Machina: Applications of Machine Learning in Light Curve Analysis.
https://doi.org/10.48550/arXiv.2504.10038.



https://doi.org/10.1016/j.physrep.2014.09.008
https://doi.org/10.1038/355143a0
http://dx.doi.org/10.1038/nature04392
https://ui.adsabs.harvard.edu/link_gateway/2005Sci...309.1833B/doi:10.1126/science.1116168
https://ui.adsabs.harvard.edu/link_gateway/1997A&AS..122..299B/doi:10.1051/aas:1997136
https://doi.org/10.1051/0004-6361%3A200809709
https://ui.adsabs.harvard.edu/link_gateway/2007ApJ...662.1093W/doi:10.1086/517989
https://ui.adsabs.harvard.edu/link_gateway/2008A&A...484..293Z/doi:10.1051/0004-6361:20079210
https://arxiv.org/abs/2310.02602
https://ui.adsabs.harvard.edu/link_gateway/2020ApJ...893...77W/doi:10.48550/arXiv.1902.05489
https://ui.adsabs.harvard.edu/link_gateway/2025MNRAS.539.2707A/doi:10.1093/mnras/staf649
https://ui.adsabs.harvard.edu/link_gateway/2023MNRAS.520.6104K/doi:10.1093/mnras/stad538
https://ui.adsabs.harvard.edu/link_gateway/2025RMxAC..59..109A/doi:10.22201/ia.14052059p.2025.59.20
http://dx.doi.org/10.48550/arXiv.1904.07248
http://dx.doi.org/10.48550/arXiv.1912.02934
https://ui.adsabs.harvard.edu/link_gateway/2024AstTI...1....1Z/doi:10.61977/ati2024001
http://dx.doi.org/10.5140/JASS.2024.41.3.149
http://dx.doi.org/10.3390/galaxies12060075
https://doi.org/10.1109/ACCESS.2024.3400448
https://doi.org/10.48550/arXiv.2504.10038

Eurasian Physical Technical Journal, 2025, 22, 4(54) Physics and Astronomy 141

21 VanderPlas J., Connolly A. J., Ivezié¢ Z., Gray A. (2012) Introduction to astroML: Machine learning for
astrophysics. Proceeding of the 2012 conference on intelligent data understanding, IEEE, 47-54.
https://doi.org/10.1109/CIDU.2012.6382200.

22 Turmaganbet U., Zhexebay D., Turlykozhayeva D., Skabylov A., Akhtanov S., Temesheva S., Masalim P., Tao
M. (2025). Eurasian Physical Technical Journal, 22(2 (52), 121-132. https://doi.org/10.31489/2025N2/121-132.

23 Kruiswijk K., de Wasseige G. (2023). The classification and categorisation of gamma-ray bursts with machine
learning techniques for neutrino detection. arXiv preprint arXiv:2308.12672. https://doi.org/10.48550/ arXiv.2308.12672

24 Zhang P., Li B., Gui R., Xiong S., Zou Z.C., Wang X., Zhao H. (2024) Application of Deep-learning Methods
for Distinguishing Gamma-Ray Bursts from Fermi/GBM Time-tagged Event Data. The Astrophysical Journal
Supplement Series, 272(1), 4. https://doi.org/10.48550/arXiv.2303.00370.

25 Mehta N., lyyani S. (2024) Exploring Gamma-Ray Burst Diversity: Clustering Analysis of the Emission
Characteristics of Fermi-and BATSE-detected Gamma-Ray Bursts. The Astrophysical Journal, 969(2), 88.
https://doi.org/10.3847/1538-4357/ad43e7.

26 Kumar A., Sharma K., Vinké J., Steeghs D., Gompertz B., Lyman J., Pursiainen M. (2024) Magnetars as
powering sources of gamma-ray burst associated supernovae, and unsupervised clustering of cosmic explosions. Monthly
Notices of the Royal Astronomical Society, 531(3), 3297-3309. https://doi.org/10.48550/arXiv.2403.18076.

27 Garcia-Cifuentes K., Becerra R.L., De Colle F. (2024) ClassiPyGRB: Machine Learning-Based Classification
and Visualization of Gamma Ray Bursts using t-SNE. arXiv preprint arXiv:2404.06439, https://arxiv.org/abs/2404.06439

28 MisraK., Arun K.G. (2024) Diversity in Fermi/GBM Gamma-Ray Bursts: New Insights from Machine Learning.
The Astrophysical Journal, 974(1), 55. https://doi.org/10.3847/1538-4357/ad6d6a.

29 Chen J. M., Zhu K.R., Peng Z. Y., Zhang L. (2024) Unsupervised machine learning classification of Fermi
gamma-ray bursts using spectral parameters. Monthly Notices of the Royal Astronomical Society, 527(2), 4272-4284.
https://doi.org/10.1093/mnras/stad3407.

30 Zhu S.Y., Sun W.P., Ma D.L., Zhang,F.W. (2024) Classification of Fermi gamma-ray bursts based on machine
learning. Monthly Notices of the Royal Astronomical Society, 532(2), 1434-1443.
https://doi.org/10.48550/arXiv.2406.05357.

31 Dainotti M.G., Sharma R., Narendra A., Levine D., Rinaldi E., Pollo A., Bhatta G. (2023) A stochastic approach
to reconstruct gamma-ray-burst light curves. The Astrophysical Journal Supplement Series, 267(2), 42.
https://arxiv.org/abs/2304.00520.

32 Falco R., Parmiggiani N., Bulgarelli A., Panebianco G., Castaldini L., Di Piano A., Tavani M. (2025). A New
Deep Learning Model for Gamma-Ray Bursts' Light Curves Simulation. In Astronomical Society of the Pacific
Conference Series , 541, 230. https://doi.org/10.26624/BXNK3217

33 Bai S., Kolter J.Z., Koltun V. (2018) An empirical evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271. https://doi.org/10.48550/arXiv.1803.01271.

AUTHORS’ INFORMATION

Zhunuskanov Alisher — Master (Sci.), Department of Physics and Technology, Al-Farabi Kazakh National University,
Almaty, Kazakhstan; https://orcid.org/0009-0002-5435-9740; zhunuskanov_alisher1@live.kaznu.kz

Sakan Aknur — Master (Sci.), Department of Physics and Technology, Al-Farabi Kazakh National University, Aimaty,
Kazakhstan; Scopus Author ID: 59194448000; https://orcid.org/0009-0001-8784-4470; aknursakan47@gmail.com

Akhmetali Almat — Master (Sci.), Department of Physics and Technology, Al-Farabi Kazakh National University, Aimaty,
Kazakhstan, Scopus Author ID: 58759186800, https://orcid.org/0009-0005-7254-524X; akhmetalialmat@gmail.com

Zaidyn Marat - Bachelor (Sci.), Department of Physics and Technology, Al-Farabi Kazakh National University, Aimaty,
Kazakhstan; Scopus Author ID: 59194267200; https://orcid.org/0009-0006-8505-7277; zaidyn_marat@live.kaznu.kz

Ussipov Nurzhan - PhD, Acting Associate Professor, Department of Physics and Technology, Al-Farabi Kazakh National
University, Almaty, Kazakhstan; Scopus Author 1D:57226319348, https://orcid.org/0000-0002-2512-3280;
ussipov.nurzhan@kaznu.kz



http://dx.doi.org/10.1109/CIDU.2012.6382200
https://doi.org/10.31489/2025N2/121-132
https://doi.org/10.48550/%20arXiv.2308.12672
http://dx.doi.org/10.48550/arXiv.2303.00370
http://dx.doi.org/10.3847/1538-4357/ad43e7
https://doi.org/10.48550/arXiv.2403.18076
https://arxiv.org/abs/2404.06439
http://dx.doi.org/10.3847/1538-4357/ad6d6a
http://dx.doi.org/10.1093/mnras/stad3407
http://dx.doi.org/10.48550/arXiv.2406.05357
https://arxiv.org/abs/2304.00520
https://ui.adsabs.harvard.edu/link_gateway/2025ASPC..541..230F/doi:10.26624/BXNK3217
http://dx.doi.org/10.48550/arXiv.1803.01271
https://orcid.org/0009-0002-5435-9740
mailto:zhunuskanov_alisher1@live.kaznu.kz
https://orcid.org/0009-0001-8784-4470
mailto:aknursakan47@gmail.com
http://www.scopus.com/inward/authorDetails.url?authorID=58759186800&partnerID=MN8TOARS
https://orcid.org/0009-0005-7254-524X
mailto:akhmetalialmat@gmail.com
https://orcid.org/0009-0006-8505-7277
mailto:zaidyn_marat@live.kaznu.kz
mailto:Scopus%20Author%20ID:
https://orcid.org/0000-0002-2512-3280
mailto:ussipov.nurzhan@kaznu.kz

142 Eurasian Physical Technical Journal, 2025, 22, 4(54)

ISSN 1811-1165; e-ISSN 2413-2179

APPENDIX 1
Table Al. Quantitative performance comparison for Good GRBs using BiLSTM, TCN, and BiGRU.
GRB ID Model MAE RMSE R2
GRB050318 BiLSTM 1.46 x 1072+ 0.16 x 1072 249 x 10712+ 0.28 x 1072 0.943 +0.012
TCN 1.35x 1072+ 0.09 x 1072 2.26 x 102+ 0.08 x 10712 0.955 + 0.003
GRU 1.10 x 1072+ 0.03 x 1072 1.82x 1072+ 0.02 x 1072 0.968 + 0.0008
GRB050607 BiLSTM 1.68 x 101" +£5.52 x 10712 3.92x10"+£121x10™" 0.9804 + 0.0127
TCN 1.50 x 1071 +3.59 x 1072 3.07x 107" +8.53 x 1072 0.9883 + 0.0060
GRU 1.10 x 1071 + 3.66 x 1072 2.64x 10711 +8.26 x 1072 0.9907 + 0.0050
GRB050713A | BiLSTM 2.80 x 10710+ 843 x 10 6.04 x 1070+ 1.65 x 1071 0.9383 + 0.0319
TCN 2.54x101°+2.16 x 10" 5.45x1071°+5.83 x 10 0.9522 +0.0117
GRU 1.60 x 1071°+3.87 x 101 3.29x1071°+5.84 x 1071 0.9818 + 0.0060
GRB050915B | BiLSTM 7.63 x 10711 +2.39 x 1072 1.58 x 10+ 1.13 x 10™ 0.9124 + 0.0126
TCN 7.10 x 1071 + 6.63 x 1072 1.48 x 10710+ 1.22 x 101 0.9226 + 0.0126
GRU 6.73 x 10711 +4.22 x 1072 1.34 x 10710+ 5.93 x 1072 0.9324 +0.0058
GRB060105 BiLSTM 1.91 x 107+ 1.79 x 10™" 3.09x10°+3.54 x 10" 0.9439 + 0.0124
TCN 1.81 x 10710+ 2.50 x 1072 2.93 x 10710+ 5.46 x 1072 0.9504 + 0.0020
GRU 1.45x 10710+ 5.55 x 1072 236 x1071°+6.34 x 1072 0.9668 + 0.0019
GRB060421 BIiLSTM 3.01 x 102 +3.41 x 107 497 x 103 £ 6.40 x 107 0.9998 + 0.0001
TCN 1.95x 103+ 1.04 x 1074 272 x 10712 +£9.85 x 1071 0.9999 + 0.0000
GRU 1.96 x 10712 £2.77 x 107 371 x 1012 +£5.77 x 1074 0.9999 + 0.0001
APPENDIX 2
Table A2. Quantitative performance comparison for Break Bump / Bump Flare GRBs.
GRB ID Model MAE RMSE R2
GRB060206 BIiLSTM 1.31 x 1072+ 0.48 x 1012 2.24x107"2+£0.81 x 10712 0.996 £ 0.003
TCN 147 x10"2+£1.32 x 10712 220x107"2+£2.12 x 107" 0.994 + 0.010
GRU 416 %102 +1.10x 103 6.70 x 1072 £ 1.55 x 107" 0.9996 + 0.0002
GRB141005A BiLSTM 228 x107'2+£925x 1072 3.80 x 1012+ 1.35 x 1072 0.9895 + 0.0069
TCN 2.54 x 1072+ 6.80 x 107 419x102+£1.24 x 1012 0.9878 + 0.0058
GRU 8.40 x 103+ 1.75x 10" 1.44 x10712+£2.45 x 107 0.9985 + 0.0005
GRB141221A BiLSTM 9.04 x 10712+ 3.86 x 1072 1.98 x 10711 £ 8.08 x 10712 0.9896 + 0.0066
TCN 1.52 x 107" +£3.25 x 1072 3.16 x 10711 +£5.80 x 102 0.9767 + 0.0085
GRU 3.15x 1012+ 1.77 x 10713 5.96 x 10712+ 8.47 x 10713 0.9992 + 0.0002
GRB 140713A BIiLSTM 2.93 x 107" +£2.55 x 1012 507 x 10" +5.14 x 10712 0.9564 + 0.0088
TCN 3.26 x 1071+ 1.04 x 10712 527 x 101" +£2.31 x 107 0.9541 + 0.0015
GRU 2,055 x 107" £1.78 x 10712 3.67x 10711 +3.84 x 10" 0.9680 + 0.0123
GRB 050803 BIiLSTM 1.86x 101 +£0.27 x 10 533 x 10" +0.36x 10" 0.971 £+ 0.004
TCN 1.87 x 1071 £ 0.07 x 107 453 x107"+£0.15 x 10™ 0.979 + 0.001
GRU 1.29 x 1071 +£0.14 x 107 3.21 x 1011+ 047 x 10 0.988 + 0.004
GRB 140304A BIiLSTM 4.05x 1071 +£9.26 x 10712 9.61 x 10" +£235x 10" 0.9469 + 0.0274
TCN 5.28 x 1071 £ 4.63 x 1072 1.01 x 107°+ 6.51 x 1072 0.9458 + 0.0047
GRU 2.82x 107" +£4.59 x 10712 6.36 x 1071+ 1.00 x 10~ 0.9704 + 0.0087
GRB 140713A BiLSTM 293 x 10" £2.55x 10712 5.07x 1011 +£5.14 x 1072 0.9564 + 0.0088
TCN 3.26x 107" +1.04 x 1072 527 x 1011 +£231x10™ 0.9541 + 0.0015
GRU 2.055x 107" £1.78 x 1072 3.67 x 10711 +3.84 x 10712 0.9763 + 0.0049
GRB 090426 BiLSTM 5.077 x 1072 +£1.39 x 107 9.09 x 103 +£3.33 x 107" 0.9935 + 0.0039
TCN 4.073 x 1073 £ 6.05 x 107" 6.72 x 1072 +7.45 x 107+ 0.9971 + 0.0007
GRU 2.67x10712+£1.47 %101 416 x 1072 +£2.00 x 107 0.9986 + 0.0016
GRB140709A BiLSTM 4.65x107°+£9.20x 10" 7.83 x 10710+ 1.39 x 107° 0.9495 + 0.0180
TCN 429 x10°+£928 x 10712 7.33 x 1071°+£2.77 x 10 0.9571 + 0.0031
GRU 3.72 x 1070+ 7.42 x 107" 6.14 x 107°+ 1.39 x 107'° 0.9680 + 0.0123
GRB050712 BiLSTM 240 x 10711 £ 6.27 x 10712 422 x 10" £1.12x 10" 0.9503 + 0.0251
TCN 2.76 x 10711 £2.06 x 10712 4.95x 10711 +£5.67 x 10712 0.9345 +0.0154
GRU 1.24 x 107" £3.34 x 1072 224 x 107" +£6.28 x 1072 0.9854 + 0.0083




