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Abstract. There are a number of products that operate under extremely difficult conditions of complex 

loading, the manufacture of which by traditional stamping operations does not provide the required properties, 

which leads to a large number of defects. One of the possible directions for the manufacture of products of 

increased strength is the introduction into the technological process of methods of intense plastic deformation, 

which can be either volumetric (equal-channel angular pressing, longitudinal extrusion through a channel of 

variable cross-section, drawing with wall thinning along the internal contour) or surface (grinding holes, rolling 

with rollers or balls). The study demonstrates the application of the approximate monotonicity criterion and its 

relationship with technological parameters, using the example of a deep drawing process with wall thinning. A 

case is presented where technological parameters, including friction conditions and the degree of deformation, 

are selected to ensure approximate monotonicity during the thinning process. The findings provide a basis for the 

rational selection of the "strain-stress" curve, contributing to a more accurate and efficient design of deformation 

processes.  

 
Keywords:  Technological process, drawing with wall thinning, intense plastic deformation, criterion of 

approximate monotonicity, stress-strain state. 

1. Introduction  

The solution of metal forming problems through the calculation of the stress-strain state (SSS) is based 

on several assumptions, one of which involves adopting a specific "strain-stress" curve. According to the 

established classification of complex loading processes [1-9], the selection of this curve is intricately linked 

to the concept of monotonic deformation, a term introduced into scientific discourse by G.A. Smirnov-

Alyaev [2]. This process is widely used in the manufacture of axisymmetric parts with constant and variable 

wall thickness [3–4]. The deforming elements are a cylindrical mandrel and a roller having a conical or torus 

shape. During processing, the roller rolls along a rotating workpiece with a given axial feed and ensures 

forced thinning of the wall to the required value. Within the geometric focus of deformation, the material is 

under conditions of uneven all-round compression, which greatly complicates the theoretical study of the 

SSS of this process. This determines that the improvement of the technology of the rotary drawing process is 

based mainly on the results, on the basis of which various theoretical models are developed [5–10]. 
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The purpose – is to apply the approximate monotonicity criterion and establish its connection with 

technological parameters using the example of a hood with wall thinning, to develop an algorithm for 

selecting technological parameters, such as friction conditions and the degree of deformation, in the thinning 

process of a deep drawing operation is designed to ensure the approximate monotonicity of the process. This 

algorithm provides a systematic approach to optimizing the deformation process by maintaining stability in 

the strain distribution and minimizing deviations from monotonic behavior throughout the operation. 

The results allow a reasonable choice of the “strain-stress” curve. 

Monotonic deformation is characterized by the simultaneous fulfillment of two conditions:  

1) the principal axes of the strain rate remain aligned with the same material fibers throughout the 

process;  

2) the value of 𝜈 = 𝜈�̇� =
2�̇�2−�̇�1−�̇�3

�̇�1−�̇�3
 remains constant during the entire deformation. 

The first condition of monotonicity means the coaxiality of the tensors 𝑇𝜀 and 𝑇�̇�. In other words, if 

denote the principal axes of tensor 𝑇𝜀 as X1, X2 and X3 corresponding to its eigenvalues 𝜆1 > 𝜆2 > 𝜆3, and 

the principal axes of tensor 𝑇�̇� as 𝑌1, 𝑌2 and 𝑌3 – then the relationships  𝑋1||𝑌1, 𝑋2||𝑌2 and 𝑋3||𝑌3 must hold. 

Let us denote the rotation angle of the principal axes of the strain rate tensor relative to the principal 

axes of the strain tensor as 𝛼. he first condition for monotonicity can then be expressed as 𝛼 = 0. The second 

condition, by definition, is written as 𝜈 =const. 

For any given process, the selection of the "strain-stress" curve depends on whether both conditions are 

fully met, only one is satisfied, or neither holds true [1]. 

In practice, however, the exact fulfillment of 𝛼 = 0 and 𝜈 =const, is unlikely, as these are idealized 

equality conditions. When addressing real-world problems, the concept of "approximate monotonicity" is 

typically used, although the degree of this approximation is not explicitly quantified. In general, both 𝛼 and 𝜈 

ary over time, expressed as 𝛼 = 𝛼(𝑡), 𝜈 = 𝜈(𝑡).  
In [1], a criterion for approximate monotonicity was proposed: 

 

𝑑 = 𝑚𝑎𝑥 [
1

𝜋
𝑚𝑎𝑥
𝑡
(𝛼(𝑡));  

1

2
(𝑚𝑎𝑥

𝑡
𝜈(𝑡) − 𝑚𝑖𝑛

𝑡
𝜈(𝑡))]                                                                                      (1) 

 

- a scalar, based on the value of which you can decide whether or not to consider a given process monotonic. 

The criterion for approximate monotonicity 𝑑 у satisfies the inequality 0 ≤ 𝑑 ≤ 1, and for monotonic 

processes the equality 𝑑 = 0 holds. 

The concept of monotonic deformation by Smirnov-Alyaeva G.A. establishes a connection between the 

strain tensor and the strain rate tensor. The use of flow theory in solving plastic deformation problems in 

metal forming focuses on quantities such as flow rates, strain rates, and stresses, without involving 

displacements or deformations in the solution. Conversely, when the theory of small elastic deformations is 

applied, the analysis excludes velocities and strain rates, focusing instead on displacements and 

deformations. 

In [11], which develops this approach, the strain rate is determined using sections in accordance with a 

methodology in which the deformed state is determined using microstructural analysis performed near a 

selected point. The authors conducted a drawing and deformation study in which a single cold drawing pass 

drew a 12 mm diameter circular tube with a 1 mm wall thickness made of steel into a square tube. This study 

determined how material properties affect the energy intensity of the manufacturing process and the strain 

rate when drawing a square tube. 

The development of deformations has been studied in a number of other works. Khatala et al. [12] 

studied the deformations that occur in a non-circular pipe during processing and described the development 

of a mathematical model using the DEFORM software package. State variables describing the initial state of 

the material (such as stress, strain, and strain rate) and the flow of material during the drawing process were 

determined through numerical calculation. Boutenel et al. [13] studied the cold drawing of high-precision 

non-circular pipes using a computer model that very accurately predicted the final dimensions of the pipe 

and determined the effect of die angle on the drawing force and the effect of relative thickness on pipe 

deformation. 

In [14], under a number of assumptions (including the plane nature of the problem), the stress-strain 

state (SSS) of the workpiece wall during drawing with thinning was calculated. The expression for the 
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intensity of the strain rate is the product of two functions that depend on only one variable and has a 

relatively simple form. 

In the event that the expression for the intensity of the strain rate does not have a simple form, 

constructing an analytical solution to the system of equilibrium equations is very difficult. The assumption of 

the flat nature of the problem adopted in [14, 15] is quite restrictive for cartridge-case production, since the 

ratio of the wall thickness of the semi-finished case to its diameter is quite large, so it is necessary to classify 

the case as a thick-walled workpiece. It is also impossible to use the obtained solution for calculating the 

stress-strain state and assessing the degree of deformation of thick-walled workpieces during drawing with 

thinning. Blanks for drawing with thinning are divided into thin-walled and thick-walled blanks. 

2. Practical Research  

Let us demonstrate the practical application of the approximate monotonicity criteria using the example 

of a hood with wall thinning. In [3], a flow velocity field was constructed for drawing with thinning. Under 

the assumptions made there, the zone of plastic deformation (ZPD) has the form of an annular sector limited 

by circles of radii 𝑟 = 𝑎 and 𝑟 = 𝑏 (𝑎 < 𝑏), angular value𝛾. The speeds are: 

 

𝑣𝑟 =
𝑓(𝜙)

𝑟
, 𝑣𝜙 = 0, 𝑣𝜃 = 0, 

where 𝑓(𝜙) was calculated in [4]: 

𝑓(𝜙) = −𝑣0𝑎 ⋅ 𝑒

2

𝐶√3
(√1−3𝐶1

2−√1−3(𝐶1−𝐶𝜙)
2)

                                                                                          (2) 

 

and satisfies the inequality 𝑓(𝜙) < 0. Thus, the movement of particles along the ZPD occurs in the radial 

direction in the direction of decreasing the radius. This movement determines the unique dependence of the 

radial coordinate on time, the explicit form of which is established in [4]: 

 

𝑡(𝜙) =
𝑟2−𝑏2

2⋅𝑓(𝜙)
.                                                                                                                                           (3) 

 

By definition of current speed 𝑣𝑟 =
𝑑𝑢𝑟

𝑑𝑡
. Writing the speed 𝑣𝑟 taking into account (3) as a function of 

time, find: 

𝑢𝑟 = ∫
𝑓(𝜙)𝑑𝑡

√𝑏2+2𝑡⋅𝑓(𝜙)
= √𝑏2 + 2𝑡 ⋅ 𝑓(𝜙) − 𝑏

𝑡

0
.                                                                                          (4) 

 

Note that take into account relation (3) in relation (4), obtain 𝑢𝑟 = 𝑟 − 𝑏 , as one would expect. It's 

obvious that 𝑢𝜙 = 0, 𝑢𝜃 = 0. Knowing the displacements, calculate the deformations: 𝜀𝑟 = 1, 𝜀𝜙 =
𝑟−𝑏

𝑟
.  To 

search for shear strain 𝛾𝑟𝜙 use relation (4): 

 

𝛾𝑟𝜙 =
1

𝑟

𝑡⋅𝑓′(𝜙)

√𝑏2+2𝑡⋅𝑓(𝜙)
=
(𝑟2−𝑏2)⋅𝑓′(𝜙)

2𝑟2⋅𝑓(𝜙)
                                                                                             (5) 

 

Thus, the strain tensors 𝑇𝜀 and strain rate 𝑇�̇� (its components are taken from [3]) have the form: 

 

𝑇𝜀 =

(

 
 

1
(𝑟2−𝑏2)⋅𝑓′(𝜙)

2𝑟2⋅𝑓(𝜙)
0

(𝑟2−𝑏2)⋅𝑓′(𝜙)

2𝑟2⋅𝑓(𝜙)

𝑟−𝑏

𝑟
0

0 0 0)

 
 

 and 𝑇�̇� =

(

 
−
𝑓(𝜙)

𝑟2
𝑓′(𝜙)

2𝑟2
0

𝑓′(𝜙)

2𝑟2
𝑓(𝜙)

𝑟2
0

0 0 0)

 .                                               (6) 

 

The inequalities are satisfied (in the first one must take into account that 
𝑟−𝑏

𝑟
< 0): 
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𝑑𝑒𝑡 (
1

(𝑟2−𝑏2)⋅𝑓′(𝜙)

2𝑟2⋅𝑓(𝜙)

(𝑟2−𝑏2)⋅𝑓′(𝜙)

2𝑟2⋅𝑓(𝜙)

𝑟−𝑏

𝑟

) < 0,  𝑑𝑒𝑡 (
−
𝑓(𝜙)

𝑟2
𝑓′(𝜙)

2𝑟2

𝑓′(𝜙)

2𝑟2
𝑓(𝜙)

𝑟2

) < 0. 

 

As a result, the eigenvalues of both tensors 𝑇𝜀 and 𝑇�̇� include one positive, one zero, and one negative 

value, with the zero-eigenvalue corresponding to the eigenvector (0 0 1) for both tensors. Consequently, 

the first and third principal axes of one tensor are generally rotated by a certain angle in the XOY plane 

relative to the corresponding axes of the other tensor. This angle is denoted as 𝛼. It is important to note that 

the presence of a zero eigenvalue, combined with the incompressibility condition (i.e., the zero trace 

condition for the tensor 𝑇�̇�) implies that 𝜈 = 0. Therefore, the second condition of monotonicity is satisfied, 

and the expression for the measure of monotonicity becomes 𝑑 =
1

𝜋
𝑚𝑎𝑥
𝑡
(𝛼(𝑡)). 

To compute the angle 𝛼 between the first principal vectors of two matrices, it is advantageous for the 

matrices to be in their simplest form. According to the definitions of eigenvalues and eigenvectors, if  𝑋 is an 

eigenvector of matrix 𝐴, corresponding to the eigenvalue 𝜆, then for any 𝜇 ∈ (−∞; +∞) the vector 𝑋 is an 

eigenvector of matrix 𝐴 + 𝜇𝐸 (where 𝐸 is the identity matrix), corresponding to the eigenvalue 𝜆 + 𝜇. 

Furthermore, when substituting matrix 𝐴 with 𝐴 + 𝜇𝐸 t the order of the eigenvalues remains 

unchanged; thus, the largest eigenvalue of matrix 𝐴 corresponds to the largest eigenvalue of matrix 𝐴 + 𝜇𝐸. 

Additionally, scaling a matrix by any positive constant does not affect the order of its eigenvalues or the 

corresponding eigenvectors. This property allows for the transformation of matrices 𝑇𝜀 and 𝑇�̇� into matrices 

of a simpler structure. The original matrices 𝑇𝜀 and 𝑇�̇� are represented as follows (see (6)): 

 

𝑇 = (
𝑐11 𝑐12 0
𝑐12 𝑐22 0
0 0 0

) 

 

Let us denote the matrix obtained by this transformation from 𝑇𝜀, by 𝐴, and the matrix obtained from 

𝑇�̇�, by 𝐵: 

𝐴 = (
1 𝑎12 0
𝑎12 −1 0
0 0 𝑎33

), 𝐵 = (
1 𝑏12 0
𝑏12 −1 0
0 0 0

), 

here 

 

𝑎12 = −
2(𝑏2−𝑟2)

𝑟𝑏
⋅
𝑓′(𝜙)

2𝑓(𝜙)
 и 𝑏12 = −

𝑓′(𝜙)

2𝑓(𝜙)
                                                                                                (7) 

 

Note that 𝑏12 is a function only of the angle 𝜙, that is,  𝑏12 does not change on a fixed trajectory. Note 

also that 𝑎12 =
2(𝑏2−𝑟2)

𝑟𝑏
⋅ 𝑏12. The value 𝑘 =

2(𝑏2−𝑟2)

𝑟𝑏
 is a certain coefficient of proportionality that depends 

only on the radius 𝑟, that is, changing along any fixed trajectory. Since 𝑎 ≤ 𝑟 ≤ 𝑏, then the coefficient 𝑘 is 

positive. Moreover, since  

𝑘𝑟
′ = (

2(𝑏2−𝑟2)

𝑟𝑏
)
′

= −
2(𝑏2+𝑟2)

𝑏𝑟2
< 0, 

then the coefficient 𝑘 is a monotonically decreasing function of 𝑟, that is, when moving along the trajectory 

towards a decreasing radius, the coefficient 𝑘 monotonically increases. 

Thus, to calculate the approximate monotonicity criteria, it remains to calculate the angle 𝛼 between the 

first eigenvectors 𝑋1 and 𝑌1 matrices 𝐴 and 𝐵. The angle 𝛼1 between 𝑋1 and the 𝑂𝑋 axis: 

 

𝛼1 = arctg
𝑎12

1+√1+𝑎12
2
=
arctg(𝑎12)

2
. 

Similarly, the angle 𝛼2 between 𝑌1 and the 𝑂𝑋 axis: 

 

𝛼2 = arctg
𝑏12

1+√1+𝑏12
2
=
arctg(𝑏12)

2
. 
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Consequently, 𝛼 = |𝛼1 − 𝛼2|. Along any fixed trajectory, the angle 𝛼2 remains constant. When 𝑟 = 𝑏 

(at the entry point to the ZPD), the condition 𝑘 = 0 is fulfilled, resulting in 𝑎12 = 0, which indicates that 𝑋1 

aligns with the OX axis, making the desired angle 𝛼 = 𝛼2. The diagram illustrating the variation of angle 𝛼 

The diagram illustrating the variation of angle 𝑘 = 1, matrices 𝐴 and 𝐵 will be identical, leading to the 

condition 𝛼 = 0.  

By solving the equation 𝑘 = 1, obtain the corresponding value 𝑟0 =
√17−1

4
𝑏). With a further increase in 

the coefficient 𝑘 the angle 𝛼1, which has already exceeded the angle 𝛼2, will continue to increase, so it will 

be 𝛼 = 𝛼1 − 𝛼2. At some point, the equality 𝛼1 = 2𝛼2, will be achieved, at which again 𝛼 = 𝛼2 will appear 

(by solving the equation 𝛼1 = 2𝛼2, find that for |𝑏12| < 1 a solution exists, the corresponding coefficient 

𝑘 =
2

1−𝑏12
2 , and the radius value 

𝑟1 =
√4𝑏12

4 − 8𝑏12
2 + 5 − 1

2(1 − 𝑏12
2 )

𝑏 

 

(whereby the inequality 𝑟1 < 𝑟0 always holds, and for |𝑏12| ≥ 1 the equality 𝛼1 = 2𝛼2 is impossible). The 

value of the internal radius 𝑎 determines to what value the radius will decrease when moving along the 

trajectory in the ZPD. There are three options: 

1) if 𝑟0 < 𝑎 (such 𝑎 in Fig.1 is designated as 𝑎1), then 𝑚𝑖𝑛𝛼 = 𝛼2 − 𝛼1(𝑎1), 𝑚𝑎𝑥 𝛼 = 𝛼2 − 𝛼1(𝑏) =
𝛼2. 

2) if 𝑟1 < 𝑎 ≤ 𝑟0 (such 𝑎 in Fig.1 is designated as 𝑎2), then 𝑚𝑖𝑛𝛼 = 𝛼2 − 𝛼1(𝑟0) = 0, 𝑚𝑎𝑥 𝛼 = 𝛼2 −
𝛼1(𝑏) = 𝛼2. 

2) if 𝑎 ≤ 𝑟1 (such 𝑎 in Fig.1 is designated as 𝑎3), then 𝑚𝑖𝑛𝛼 = 𝛼2 − 𝛼1(𝑟0) = 0, 𝑚𝑎𝑥 𝛼 = 𝛼1(𝑎3) −
𝛼2. 

It follows that on each fixed trajectory, if the thickness of the ZPD in the radial direction is not too 

large, then 𝑑 =
1

𝜋
𝛼2 is achieved at the entrance to the ZPD, and if the thickness of the ZPD in the radial 

direction is sufficiently large, then 𝑑 =
1

𝜋
(𝛼1(𝑎) − 𝛼2) >

1

𝜋
𝛼2 and is achieved at the exit from the ZPD. 

 

 
 

Fig.1. Variation of the angle 𝜶 while traversing along a trajectory is observed at point 𝒓 = 𝒃 ─ which serves as the 

entry point into the ZPD. The points 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 represent potential exit points from the ZPD, corresponding to different 

values of the internal radius of the ZPD under varying degrees of deformation and friction conditions. 

 

In both cases, the angle 𝛼2 (and, therefore, the value of 𝑑) depends on the angle 𝜙 f the entrance to the 

ZPD and the friction coefficients along the working surfaces of the punch and matrix. Let us establish this 

dependence explicitly. Substituting explicit expression (2) for the function 𝑓(𝜙) into formula (7), after 

transformations obtain (here 𝐶1 = 0.5𝛽𝜇1, 𝐶 =
𝛽(0.5𝜇1−𝜇)

𝛼
, 𝜇 is the friction coefficient on the surface matrix, 

𝜇1 is  coefficient of friction on the surface of the punch (the law of constant friction force is applied (Siebel's 

law, or Prandtl's law), therefore 0 ≤ 𝜇 ≤ 0.5 и 0 ≤ 𝜇1 ≤ 0.5), 𝛼 is cone angle of the matrix drawing 

particle): 
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𝑏12 =
(𝐶1−𝐶𝜙)√3

√1−3(𝐶1−𝐶𝜙)
2
. 

 

If denote 𝑄 = 𝐶1 − 𝐶𝜙 (the value of Q reflects the cumulative influence of friction coefficients), and 

take into account that 0 ≤ 𝑚𝑖𝑛(𝛽𝜇1/2; 𝛽𝜇) ≤ 𝑄 ≤ 𝑚𝑎𝑥(𝛽𝜇1/2; 𝛽𝜇) ≤ 1/√3, then the value 

 

𝛼2 =
arctg(𝑏12)

2
=
1

2
arctg

𝑄√3

√1 − 3𝑄2
 

 

monotonically increases from 0 to 𝜋/4. In order for the inequality |𝑏12| < 1 to be satisfied, it is necessary 

and sufficient to satisfy the inequality 
𝑄√3

√1−3𝑄2
< 1, from which obtain |𝑄| < 1/√6 (for such 𝑄 there will be 

𝛼2 < 𝜋/8). In this case have: 𝑟1 =
√153𝑄4−54𝑄2+5−(1−3𝑄2)

2(1−6𝑄2)
𝑏.  Graphs of 𝛼2 and 𝑟1/𝑏 as functions of 𝑄 are 

shown in Fig.2. 
 

  
a) b) 

Fig.2. а) Dependence of angle 𝛼2 (in radians) on 𝑄; б) Dependence of the value 𝑟1/𝑏 on 𝑄  

 

So, will show how to evaluate the monotonicity of the drawing process with wall thinning. 

First, let us consider the problem of selecting technological parameters so that the deformation can be 

considered approximately monotonic. Establish the threshold value for the criterion of approximate 

monotonicity as 𝑑п =
1

18
 which corresponds to an allowable deviation of the principal axes of the deformation 

tensor from one another by an angle not exceeding 10°. Assume that if the inequality 𝑑 ≤ 𝑑п, is satisfied, the 

process can be considered monotonic; conversely, if 𝑑 > 𝑑п monotonicity cannot be guaranteed. This 

threshold value 𝑑п corresponds to 𝛼2п = 𝜋 ⋅ 𝑑п = 0.17453. Based on the relationship between the angle 𝛼2 от 

𝑄 (see Fig. 2a), calculate the threshold value: 

 

𝑄п =
1

√3
𝑠𝑖𝑛( 2𝛼2п) =

1

√3
𝑠𝑖𝑛

𝜋

9
= 0.19747. 

 

Then the limits are achieved by the coefficient of friction: 

 

𝑚𝑎𝑥( 𝛽𝜇1/2; 𝛽𝜇) ≤
1

√3
𝑠𝑖𝑛

𝜋

9
⇔ {

𝜇1 ≤
2

𝛽√3
𝑠𝑖𝑛

𝜋

9
≈ 0.34202,

𝜇 ≤
1

𝛽√3
𝑠𝑖𝑛

𝜋

9
≈ 0.17101.

                                                                        (8) 

 

Moreover, since 𝑄п < 1/√6 ≈ 0.40825 (that is, |𝑏12| < 1), then, depending on the extent of deformation, 

any of the three cases is possible (which correspond to points 𝑎1, 𝑎2, 𝑎3 of the exit from the ZPD). To obtain 

case 1 from the inequality 𝑟0 < 𝑎 and formulas for the radii of the OPD [3, p. 279, (15.23)] 𝑏 = (𝑅нд −

𝑟в)/ 𝑠𝑖𝑛( 𝛾) and 𝑎 = (𝑅нп − 𝑟в)/ 𝑠𝑖𝑛( 𝛾) (here 𝑅нд is the outer radius before drawing with thinning, 𝑅нп is the 

outer radius after drawing, 𝑟в is inner radius, 𝛾 is cone angle of the exhaust part of the matrix) find that 𝑅нп 

should not be too small, that is, the degree of deformation should not be too big: 
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𝑅нп >
√17 − 1

4
𝑅нд +

5 − √17

4
𝑟в ≈ 0.78078𝑅нд + 0.21922𝑟в. 

 

To obtain case 2, firstly, it is required that 𝑅нп be small enough 

 

𝑟в < 𝑅нп ≤
√17−1

4
𝑅нд +

5−√17

4
𝑟в ≈ ≈ 0.78078𝑅нд + 0.21922𝑟в 

 

(the degree of deformation must be quite large), and, secondly, the inequality 𝑟1 < 𝑎, must be satisfied, that 

is: 
√153𝑄4−54𝑄2+5−(1−3𝑄2)

2(1−6𝑄2)
(𝑅нд − 𝑟в) + 𝑟в < 𝑅нп. 

 

To obtain case 3, firstly, the inequality is required 

 

𝑟в < 𝑅нп <
√153𝑄4−54𝑄2+5−(1−3𝑄2)

2(1−6𝑄2)
(𝑅нд − 𝑟в) + 𝑟в, 

 

and, secondly, since in case 3 𝑚𝑎𝑥 𝛼 = 𝛼1(𝑎3) − 𝛼2, s satisfied, then for approximate monotonicity it should 

be 𝑚𝑎𝑥 𝛼 = 𝛼1(𝑎3) − 𝛼2 ≤
𝜋

18
≈ 0.17453, that is  

 

𝑚𝑎𝑥 𝛼 = 𝛼1(𝑘𝑏12) − 𝛼2 =
1

2
arctg(𝑘𝑏12) −

1

2
arctg(𝑏12) ≤

𝜋

18
. 

 

Thus, if need to get it an approximately monotonic drawing with wall thinning, it is necessary to set the 

value of the radius 𝑅𝑛𝑝 (the radii 𝑅𝑛𝑑, 𝑟𝑣 can be regarded as fixed parameters, allowing the selection of 𝑅𝑛𝑝 

to uniquely determine the resulting degree of deformation while ensuring that the friction coefficients remain 

at acceptable (relatively low) levels. Depending on the relative values of the radii 𝑅𝑛𝑑, 𝑅𝑛𝑝, 𝑟𝑣 an 

approximately monotonic drawing will be achieved in one of the scenarios outlined in cases 1-3. 

 

 
 

Fig.3. Admissible values of parameters Q and k (located to the left of the curve), 

 at which the third case of approximate monotonicity is realized. 

 

To address the inverse problem of determining whether a specific hood with a thinning wall can be 

classified as monotonic, it is essential to first evaluate the range of values for 𝑄: 𝑚𝑖𝑛( 𝛽𝜇1/2;   𝛽𝜇) ≤ 𝑄 ≤
𝑚𝑎𝑥( 𝛽𝜇1/2;   𝛽𝜇). Next, the angle 𝛼2 should be calculated (or estimated from Fig. 2a). If the resulting 

angle 𝛼2п = 0.17453, the drawing cannot be considered monotonic. Conversely, if the inequality 𝛼2 ≤
𝛼2п = 0.17453 holds true, it is then necessary to compute (or estimate from Fig. 2b) the value of 𝑟1. Now, 

using the known outer radius of the part before drawing 𝑅нд, the outer radius after drawing 𝑅нп, the inner 
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radius 𝑟в and the taper angle 𝛾 it is necessary to calculate the outer 𝑏 and inner radii a  of the ZPD and check 

the inequality 𝑎 ≥ 𝑟1. f this is done, then the hood can be considered monotonous. If the inequality 𝑎 < 𝑟1, is 

satisfied, then it is necessary to check the fulfillment of the inequality 

 
1

2
arctg (

2(𝑏2−𝑎2)

𝑎𝑏

𝑄√3

√1−3𝑄2
) −

1

2
arctg

𝑄√3

√1−3𝑄2
≤

𝜋

18
.                                                                                    (9) 

 

If it is done, then the hood can be considered monotonous; if it is not done, then it cannot be. 

3. Results and discussion 

Let us consider the application of the above calculations to solve practical problems in the field of 

designing a working tool for a drawing operation with wall thinning: 

Example 1. Let 𝑅нд = 40 mm, 𝑅нп = 38.5 mm, 𝑟в = 30 mm, 𝛾 = 2°,𝜇 = 0.1, 𝜇1 = 0.1. Calculate: 

0.058 ≤ 𝑄 ≤ 0.115, 0.05 ≤ 𝛼2 ≤ 0.101. Since the inequality 𝛼2 ≤ 𝛼2п = 0.17453 is satisfied, we 

calculate the range of variation of 𝑟1: 173.7 ≤ 𝑟1 ≤ 176.3 and radii: 𝑏 = 286.5mm, 𝑎 = 243.6mm. Since 

the inequality 𝑎 ≥ 𝑟1, holds, the drawing can be considered monotonic. 

Example 2. Let 𝑅нд = 40mm, 𝑅нп = 38.5mm, 𝑟в = 30mm, 𝛾 = 2, 𝜇 = 0.2, 𝜇1 = 0.1. Calculate: 

0.058 ≤ 𝑄 ≤ 0.231, 0.05 ≤ 𝛼2 ≤ 0.206. Since some of the 𝛼2 values exceed the threshold value 𝛼2п =
0.17453, the hood cannot be considered monotonic. This happened because the friction coefficient 𝜇 does 

not satisfy inequality (8). In general, inequalities (8) are the main conditions on which approximate 

monotonicity depends. 

Example 3. Let 𝑅нд = 40mm, 𝑅нп = 36mm, 𝑟в = 30mm, 𝛾 = 2°,𝜇 = 0.1, 𝜇1 = 0.1. Calculate: 

0.058 ≤ 𝑄 ≤ 0.115, 0.05 ≤ 𝛼2 ≤ 0.101. Since the inequality 𝛼2 ≤ 𝛼2п = 0.17453 is satisfied, calculate 

the range of changes: 1r : 173.7 ≤ 𝑟1 ≤ 176.3 and radii: 𝑏 = 286.5mm, 𝑎 = 171.9mm. Since the inequality 

𝑎 < 𝑟1, it is necessary to check the fulfillment of inequality (9) over the entire range of changes in 𝑄. For 

𝑄𝑚𝑖𝑛: 0.056 < 𝜋/18 ≈ 0.175 - fulfilled, for 𝑄𝑚𝑎𝑥: 0.105 < 𝜋/18 ≈ 0.175 - fulfilled. Thus, the hood can 

be considered monotonous. It is necessary to check inequality (8) even if for part of the range of variation 𝑟1 

the inequality 𝑎 < 𝑟1 is satisfied, but for part it is not.  

In the examined model, the parameters that define the geometric dimensions of the exhaust section of 

the matrix are the radii 𝑅нд, 𝑅нп and 𝑟в.  Consequently, it can be concluded that approximate monotonicity is 

influenced by the cone angle solely through the radii 𝑏 and 𝑎 (similar to how the degree of deformation for 

the exhaust with wall thinning is calculated in [4]), given that any arbitrary matrix thickness (greater than 

115 mm, as illustrated in example 3) is deemed acceptable. However, if the matrix thickness is treated as a 

fixed parameter, then a drawing with a significant degree of thinning will inherently necessitate a larger taper 

angle. Let's say, increasing the taper angle for the data from example 3 to 𝛾 = 12 (and keeping the remaining 

data), obtain 𝑏 = 48.1mm, 𝑎 = 28.9mm, 29.2 ≤ 𝑟1 ≤ 29.6 while keeping the ranges for 𝑄 and 𝛼2 and the 

left sides of inequality (9) for 𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥 and with still approximately monotonic stretching. 

4. Conclusion  

In engineering technological practice, monotonic processes are rare. At the same time, a huge number 

of technological problems are associated with the analysis of processes close to monotonic, due to the 

limitations imposed on engineering calculation models. In this regard, an assessment of the proximity of a 

specific technological process being developed to a monotonic or other special cases of complex loading is 

necessary, since this allows us to assess the validity of using a particular rheological model of the processed 

material, which underlies this technological problem. 

At the current stage of research, the developed technological recommendations allow the process 

engineer to assess the "level of monotonicity" of the process and, if necessary, make changes to the 

deformation modes of the semi-finished product. Providing the operation with the condition of a 

"monotonic" process allows us to minimize errors in the application of a rheological model of material 

hardening (for example, based on the results of a tensile test) and, thereby, predict the possibility of 

hardening the material and ensuring tactical and technical requirements, the possibility of loss of stability or 

destruction.  
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The result of the implementation of this tool is a stable technological process, where a balance is 

maintained between the level of material hardening acquired during stamping operations and heat treatment, 

which leads to a reduction in defects and an increase in the quality of manufactured products. 
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