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Abstract. The influence of the width of the interelectrode gap on the focusing quality of electrostatic mirrors 

with rotational symmetry, the electrodes of which are coaxial cylinders of equal diameter separated by gaps of finite 

width, has been studied. Formulas, convenient for the numerical calculation of the exact values of the axial potential 

distribution in such mirrors, are proposed. Using the obtained formulas  in numerical calculations and taking into 

account the width of the interelectrode gap, the geometric and electrical parameters of two- and three-electrode 

mirrors were determined, which provide spatial focusing of beams of charged particles simultaneously with the 

elimination of time-of-flight chromatic aberrations and spherical and axial chromatic spatial aberrations, the most 

important factors in terms of influence on the resolution of time-of-flight mass spectrometers and electron 

microscopes. It is shown that the width of the interelectrode gap has a significant effect on the quality of focusing 

of electrostatic mirrors with cylindrical electrodes. 

 

Keywords: time-of-flight mass spectrometer, electron microscope, electrostatic mirror, space-time-of-flight focusing, 
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1. Introduction 

Electrostatic mirrors are the most important structural elements of modern time-of-flight reflector-type 

mass spectrometers [1-5] and electron microscopes [6-14], performing the roles of an ion reflector and an 

aberration corrector, respectively. The resolution and sensitivity of such devices largely depend on the focusing 

quality of such mirrors. In this regard, electrostatic mirrors formed by fields with rotational symmetry are of 

particular interest. Such fields, which play the role of centered electron-optical focusing systems with respect 

to charged particles, are capable of creating a correct electron-optical image of an object. However, the most 

studied and widely used designs of such mirrors for practical implementation are sets of coaxial circular 

cylinders. The advantage of cylindrical electrodes is the ability to shield a beam of charged particles from 

scattered electric fields. 

In [5, 12-14], where the quality of focusing of electrostatic mirrors with cylindrical electrodes was 

studied, the calculation of the axial potential distribution was performed using exact formulas under the 

assumption that the width of the interelectrode gap is infinitely small. However, the practical use of such 

mirrors places high demands on the accuracy of determining the geometric and electrical parameters, taking 

into account the width of the interelectrode gap, which ensures the quality of focusing in devices with high 
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resolution. In addition, high requirements for the width of the interelectrode gap are necessary to ensure 

electrostatic strength at high field strengths. 

It is well known that the quality of focusing is determined by aberrations – distortions in the image of an 

object caused by various reasons. One of the main tasks of charged particle optics is to identify the types of 

aberrations inherent in a given system, and then eliminate or reduce the most important ones. In this regard, 

electrostatic mirrors with cylindrical electrodes have unique properties: firstly, they can provide spatial 

focusing of beams of charged particles simultaneously with time-of-flight energy focusing [5], i.e., eliminate 

time-of-flight chromatic aberrations that limit the resolution of time-of-flight mass spectrometers; secondly, 

they can be free from spherical and axial chromatic aberrations simultaneously [12-14] or act as a corrector 

for these aberrations [12], which are the main factors limiting the resolution of electron microscopes. 

The aim of this work is to study the influence of the width of the interelectrode gap on the quality of 

focusing of two- and three-electrode mirrors with rotational symmetry, the electrodes of which are made in the 

form of coaxial cylinders of equal diameter, separated by gaps of finite width. 

2. Two-electrode mirror with space-time focusing 

2.1. Axial potential distribution of a two-electrode mirror 

Figure 1 shows a schematic diagram of a two-electrode mirror, the electrodes of which are coaxial 

cylinders of equal diameter d separated by a gap of finite width. 

  

 
 

1 2,V V   are potentials on the electrodes; d  is the cylinder diameter;   is the gap width between electrodes 

Fig.1. Two-electrode electrostatic mirror. 

 

The potential distribution along the optical axis z of such a mirror can be written in the form 

( ) ( ) ( ) ( )1 2 2 1

1

2
z V V V V U z = + + − .                                                                                                        (1) 

Here 1V  and 2V   are potentials at the mirror electrodes, and ( )U z is a function described by the exact 

expression [15]: 

( )
( ) ( )

00

sin sin /1

/ ( )

kz k R dk
U z

k k R I k



 



=  ,                                                                                                    (2) 

where 0 ( )I k   is a modified Bessel function of the first kind of zero order, and R  is the radius of the cylindrical 

electrode. To avoid the difficulties that arise when calculating integral (2) due to its weak convergence, we 

transformed it into a form convenient for calculations. 

To simplify the notation, we will further use 1R = , i.e. all linear dimensions will be measured in cylinder 

radii. Then 

( )
( ) ( )

00

sin sin1

( )

kz k dk
U z

k k I k



 



=  .                                                                                                         (3) 

Let us rewrite (3), writing out the product of sines: 

( ) ( )1 2

1

2
U z U U


= + ,                                                                                                                              (4) 

where 
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( )
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=  ,                                                                                                                     (5) 
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2 2
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k z dk
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k I k





 +
= −  .                                                                                                                 (6) 

Taking into account the parity of the integrand, and also having written the cosine, we rewrite (5) in the 

form 

( )
( ) ( )

1 2 2

0 0

exp exp1

4 ( ) ( )

ik z ik zdk dk
U z

k I k k I k

 



 

− −

  −  − −    
= + 

  
  .                                                        (7) 

It is convenient to calculate integral (7) can using contour integrals: 

  

( )
( ) ( )

1 2 2

0 0

exp exp1 1

4 ( ) 4 ( )

ik z ik zdk dk
U z

k I k k I k

 

 
+ −

 −  − −    
= +  ,                                                      (8) 

where +  is the contour of integration along the real axis, which goes around the origin of the coordinate 

system from below as a narrow loop and closes it in the upper half-plane of the complex variable k  by a 

semicircle of an infinite radius, −  is a contour that consists of the real axis and closes, accordingly, in the 

lower half-plane (Figure 2). 

  
Fig.2. Integration contours on the complex plane. 

 

Note that the contours of integration +  and − , with the exception of the vicinity of the point 0k = , 

are located mirror symmetrically to each other, where the contour 𝛤+ contains a second-order pole inside itself. 

As the integrand is meromorphic inside the contour, the integral is equal to the sum of the residues at the 

poles sk i= , where ( )1, 2,...s s =   are the zeros (roots) of the zero-order modified Bessel function. 

Taking into account the residue at the point 0k = , which is a simple pole of the second order 

( )
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Re , 0

( )

ik z
s k i z

I k



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= = − 
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,                                                                                                     (9) 

we can calculate the integral: 

( )
( )2
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exp1 1 1
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s
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k I k
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Here 
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( )
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B  

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are the coefficients of the series, which follow from the representation of the modified Bessel function of zero 

order in the form of an infinite product: 

( )
( )

( )0* *
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2
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s
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Similarly to (10), we calculate the integral: 
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Then, taking into account (9) - (12), expression (6) takes the form: 

( )
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which is also valid for the case 0z −  . 

Substituting z z − → +   we can write (6) as 

( )
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Taking into account (3) and (13) - (14), we finally obtain integral (3) in the form of an exponentially 

convergent infinite series:  
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1
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Hence, expression (3) can be written as:  

( )

( ) ( )

( ) ( )

( ) ( )
1

exp ,1
1

/ exp ,
2

1 exp ,

s s

s
s s

s s

s s

z Sh z
B

U z z Sh z z

z Sh z

   

    


   



=

  −   
    

= − −    
    − −  −    

 ,                                                          (17) 

or 

( )

( ) ( ) ( )

( ) ( )

1

1

1 exp , ,
1

2
/ exp , ,

s
s s

s s

s
s s

s s

B
sign z z Sh z

U z
B

z Sh z z

   
 

    
 



=



=

  
− −   

  =  
 

− − 
 
 





.                                                (18) 

For 0 →  formula (18) transforms into a well-known expression [16]: 
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
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obtained in the other way from the exact expression [17] 
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also following from (3). 

 

2.2. Space-time focusing conditions 

The time-of-flight characteristics of the mirror, precise to the third smallest value inclusive, are 

completely determined by specifying four quantities that depend only on the axial distribution of the mirror 

potential [18]: 
( )0

Tz z=  –  position of the effective plane of rotation of the central (with zero energy spread) 

particle in the mirror; 
( ) ( )1,2,3
k

Tz z k= =  –  positions of the nodal planes of time-of-flight focusing of the k

- order. 
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Here and below, under the condition of time-of-flight focusing of the k -th order it is assumed that the 

time of flight of particles does not depend on the spread of their initial energies, i.e., the coefficient of time-

of-flight chromatic aberration of the k -th order is equal to zero. 

The condition of time-of-flight focusing is determined by the equation [18]: 
( ) ( )1 2 1,2,3
k

Tz z z k+ = = ,                                                                                                                  (21) 

which means that time-of-flight focusing of the k -th order is achieved if the planes 1z z=  (object plane) and 

2z z=  (time-of-flight image plane) are located symmetrically with respect to the plane 
( ) ( )1,2,3
k

Tz z k= = .  

The effective drift distance, which characterizes the time-of-flight mass dispersion of the mirror, is 

determined by the equality [18]: 
( ) ( )0 1

T TL z z= − ,                                                                                                                                         (22) 

where 
( )1
Tz z=   is the position of the main plane of time-of-flight focusing of the mirror [5]. 

When the condition  
( ) ( ) ( )1 2 3

T T T Tz z z z= = =                                                                                                                                (23) 

is satisfied, in the plane Tz z= , time-of-flight focusing up to the third order inclusive can be achieved. 

The condition for spatial focusing simultaneously with time-of-flight focusing, i.e., the condition for 

space-time-of-flight focusing is determined by equality [18]: 

( )( )1,2 T T C Vz z z z z z=  − − ,                                                                                                               (24) 

where Cz z=  and Vz z=  are the positions of the center of curvature and the vertex of the mirror, respectively, 

also depending only on the axial distribution of the mirror potential [21] and representing the spatial cardinal 

elements of the mirror. 

When 
C Tz z=  or 

V Tz z=  equality (4) takes the form: 

1 2 Tz z z= = .                                                                                                                                           (25) 

Thus, there are two types of electrostatic mirrors in which the space-time focusing condition is satisfied. 

However, mirrors corresponding to the type 
C Tz z=  have higher aperture compared to the systems 

corresponding to the type 
V Tz z=  [18]. 

2.3. Calculation of a two-electrode mirror 

The calculation of an electrostatic mirror usually starts with determining the value of the blocking 

potential –the potential on the reflecting electrode. In a two-electrode mirror, the blocking potential is the 

potential at the second electrode 2V . Its value is determined from equality (1) if the condition ( ) 0uz =
 
is 

satisfied, where uz z=  is the position of the plane of rotation of the central particle. 

The calculation of a two-electrode mirror is performed as follows. For the given values of the width  of 

the interelectrode gap and potentials 1V  and 2V  on the mirror electrodes, which determine the axial distribution 

of the potential ( )z , the position of the main plane of time-of-flight focusing ( )1
Tz z=  [5] and the effective 

drift distance (22) of the mirror are determined when the space-time-of-flight focusing condition (24) is 

satisfied in the mode C Tz z= . Here and below, in order to maintain the possibility of shielding the beam from 

scattered electric fields, the width of the interelectrode gap is limited to the value / 0.2d = . 

The results of calculating the time-of-flight characteristics of a two-electrode mirror depending on the 

width   of the interelectrode gap are presented in Table 1. Here and below, the values of electrical parameters 

are given in the units of the first electrode potential 1V , and the values of geometric parameters are given in 

the units of the cylinder diameter d . It is accepted that a beam of charged particles falls on the mirror from 

the side of the field-free space having the potential 1V , and after reflection returns to the same space. In this 

case, the positive direction of the axis z  coincides with the direction of movement of the particles falling on 

the mirror, and the origin of coordinates is placed in the middle of the gap (Figure 1). 

As it follows from the calculated data, the relative change in the values of the blocking potential and time-

of-flight characteristics compared to their values at 0 = does not exceed one percent at the gap width 
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/ 0.1d  , whereas at the gap width / 0.2d =  
such a change is about three percent. Note that for 0 = , the 

results of these calculations completely coincide with the results of [5]. 

 
Table 1. Time-of-flight characteristics of a two-electrode mirror. 

/ d  
2 1/V V−  /Tz d−  /L d  

0 0.345 3.30 4.17 

0.05 0.345 3.30 4.17 

0.1 0.344 3.32 4.20 

0.15 0.342 3.35 4.24 

0.2 0.340 3.40 4.29 

 

3. Three-electrode mirror with space-time focusing 

3.1. Axial potential distribution of a three-electrode mirror 

Figure 3 shows a scheme of a three-electrode mirror consisting of coaxial cylinders of equal diameter. 

 

 

Fig.3. Three-electrode axisymmetric mirror: 

1 2 3, ,V V V  are potentials on the electrodes;   is the width of the gaps between the electrodes; 1 2,z z  are coordinates of 

the middle of the gaps; d  is the cylinder diameter. 

 

 

Using the solution to the Dirichlet problem for two cylinders of equal diameter and the superposition 

principle, we can write an exact formula for the axial potential distribution of a three-electrode mirror in the 

form: 

( ) ( ) ( ) ( )
2

1 3 1

1 1

1

2
i i iz V V V V U z z+

=

 = + + − − .                                                                                       (26) 

Here 
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=
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



                             (27) 

where ( )1,2iz i =   is z coordinate of the middle of the i -th gap. 
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For 0 →  formula (27) takes the well-known form [16]:  

( ) ( )
1

1
( ) 1 exp

2
i i s s i

s

U z z sign z z B z z


=

 
− = − − − − 

 
 .                                                                          (28) 

3.2. Calculation of a three-electrode mirror 

In a three-electrode mirror, compared to a two-electrode mirror, two additional parameters appear in the 

form of the length of the second (middle) electrode and the potential on it, which affect the distribution of the 

mirror potential. The introduction of a middle electrode allows, at a given potential ratio on the outer 

electrodes, to control the field distribution and thereby influence the quality of space-time focusing. 

In a three-electrode mirror, the blocking potential is the potential on the third electrode 
3V , the value of 

which is determined from equality (26) when the condition ( ) 0uz =  is satisfied. 

The calculation of the three-electrode mirror is carried out as follows. For a given value of the gap width 

  between the electrodes, the values of the control potential 2V  (potential on the second electrode), the 

blocking potential 3V  and the effective length of the second electrode (the distance between the middles of the 

first and second gaps) *l l = + , where l  is the length of the second electrode, are determined. These 

parameters ensure fulfillment of the conditions for time-of-flight focusing of ions in energy up to the third 

order inclusive (3) simultaneously with spatial focusing (4) in the mode C Tz z= . 

The results of calculation of a three-electrode mirror with high-quality space-time focusing are presented 

in Table 2. In this case, the origin of coordinates is in the middle of the gap between the first and second 

electrodes of the mirror. As it follows from the calculated data, the relative change in the values of electrical 

parameters and time-of-flight characteristics compared to their values for 0 =  is of the same order of 

magnitude as in a two-electrode mirror. 

 
Table 2. Time-of-flight characteristics of a three-electrode mirror 

/ d  * /l d  2 1/V V  3 1/V V−  /Tz d−  /L d  

0 0.666 0.0432 0.342 5.56 7.22 

0.05 0.668 0.0433 0.342 5.57 7.24 

0.1 0.672 0.0439 0.342 5.60 7.28 

0.15 0.680 0.0449 0.343 5.65 7.34 

0.2 0.690 0.0461 0.343 5.72 7.43 

 

4. Three-electrode mirror free of spherical and axial chromatic aberration  

The calculation of the spherical and axial chromatic aberrations of the three-electrode mirror was carried 

out according to the formulas [19, 20]. In this case, a mirror is calculated with a second electrode length equal 

to / 0.6l d = , and the object plane of the mirror is combined with its focal plane, as in [13]. 

The mirror was calculated using the same method as in the previous section. For a given value of the 

width  of the interelectrode gap, the values of the control potential 2V  (potential on the second electrode) and 

the blocking potential 3V , ensuring fulfillment of the conditions for simultaneous elimination of the third-

order spherical aberration and the second-order axial chromatic aberration, are determined. 

The calculation results are presented in Table 3, which presents the dependences of the relative changes 

in the values of the cardinal elements of the mirror (focus coordinate Fz and focal length f ) and the potential 

ratios on its electrodes ( 2V and 3V ) on the width of the interelectrode gap. In this case, the calculation results 

are presented for the case when the object plane of the mirror is combined with its focal plane, as it was done 

earlier for an infinitesimal width of the interelectrode gap ( )0 =  [13].   

It should be noted that the width of the interelectrode gap has a significant (an order of magnitude or 

more) influence on the values of the electrical parameters and cardinal elements of the mirror, which is 

simultaneously free of spherical and axial chromatic aberrations. 

For 0 =  the results of these calculations completely coincide with the results of [13]. 
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Table 3. Three-electrode mirror free of spherical and axial chromatic aberrations. 

/ d  
2 1/V V  3 1/V V−  /Fz d−  /f d  

0 0.0255 0.292 0.948 1.85 

0.05 0.0258 0.294 0.982 1.88 

0.1 0.0266 0.303 1.10 1.99 

0.15 0.0285 0.318 1.38 2.24 

0.2 0.0328 0.347 2.14 2.96 

 

5. Conclusion 

The exact formula for the axial distribution of the potential of an electrostatic system consisting of coaxial 

cylinders of equal diameter separated by gaps of finite width is reduced to a form convenient for numerical 

calculations. Using the obtained formula in numerical calculations, the influence of the width of the 

interelectrode gap on the quality of focusing of two- and three-electrode electrostatic mirrors with rotational 

symmetry, the electrodes of which are coaxial cylinders of equal diameter separated by gaps of finite width, is 

studied. As the results of these studies have shown, taking into account the width of the interelectrode gap 

allows not only to obtain more accurate values of geometric and electrical parameters that provide the 

conditions for high-quality space-time focusing in such mirrors, but also to provide them additional 

functionality, in particular, with increasing width of the interelectrode gap the effective distance of the mirror 

increases, which, accordingly, leads to an increase in the resolution of the time-of-flight mass spectrometer. 

It should be noted that the width of the interelectrode gap has a significant impact on the values of the 

electrical parameters and cardinal elements of the mirror, which is free of spherical and axial chromatic 

aberrations simultaneously. This confirms the particular relevance of such studies from the point of view of 

the accuracy of calculations in the field of high-voltage electron microscopy, where the interelectrode gaps 

must have a width sufficient to ensure the electrostatic strength of the mirror electrodes of a real design. 

The results and formulas obtained in this work can be used in the development of new designs of time-

of-flight mass spectrometers and electron microscopes with high resolution and sensitivity. 

 

Conflict of interest statement 
The authors declare that they have no conflict of interest in relation to this research, whether financial, personal, 
authorship or otherwise, that could affect the research and its results presented in this paper. 
 
CRediT author statement 
S. Bimurzaev: Conceptualization, Methodology, Writing - original draft; Z. Sautbekova: Methodology, Software. 
The final manuscript was read and approved by all authors. 

 

Funding 
This research has been funded by the Science Committee of the Ministry of Science and of Higher 

Education the Republic of Kazakhstan (Grant No. AP14869293). 
 

Acknowledgements 
The authors are grateful to Professor E.M. Yakushev for attention to this work and useful advice. They are 

also grateful to L.E. Strautman for her help in translating the text into English. 
 

References 
 
1 Mamyrin  B.A. (2001) Time-of-flight mass spectrometry (concepts, achievements, and prospects). Int. J. Mass 

Spectrometry, 206 (3), 251-266. DOI: 10.1016/S1387-3806(00)00392-4. 

2 Wollnik H., Casares A. (2003) An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of 

two coaxial electrostatic mirrors. Int. J. Mass Spectrometry, 227 (2), 217-222. DOI: 10.1016/S1387-3806(03)00127-1. 

3 Yavor M., Verentchikov A., Hasin Y., Kozlov B., Gavrik M., Trufanov A. (2008) Planar multi-reflecting time-

of-flight mass analyzer with a jig-saw ion path. Physics Procedia, 1 (1), 391-400. DOI: 10.1016/j.phpro.2008.07.120. 



Eurasian Physical Technical Journal, 2024, 21, 4(50)                                                                                                   Physics and Astronomy  157 

. 

4 Spivak‐Lavrov I., Baisanov O., Yakushev E., Nazarenko L. (2019) TOF mass spectrometers based on a wedge‐

shaped electrostatic mirror with a two‐dimensional field. Rapid Communications in Mass Spectrometry, 34(4). 

DOI:10.1002/rcm.8590. 

5 Bimurzaev S.B., Aldiyarov N. U., Sautbekova Z.S. (2020) High Dispersive Electrostatic Mirrors of Rotational 

Symmetry with the Third Order Time-of-Flight Focusing by Energy. Technical Physics, 65, 1150–1155.  

DOI:10.1134/S1063784220070051. 

6 Rempfer G.F. (1990) A theoretical study of the hyperbolic electron mirror as a correcting element for spherical 

and chromatic aberration in electron optics. J.Appl. Phys., 67 (10), 6027-6040. DOI: 10.1063/1.345212. 

7 Preikszas D., Rose H. (1997) Correction properties of electron mirrors. Microscopy, 46 (1), 1-9. 

DOI:10.1093/oxfordjournals.jmicro.a023484. 

8 Hartel P., Preikszas D., Spehr R., Muller H., Rose H. (2002) Mirror corrector for low-voltage electron 

microscopes. Adv. Imaging & Electron Phys., 120, 41-133. DOI: 10.1016/S1076-5670(02)80034-9.   

9 Hawkes P.W. (2009) Aberration correction past and present. Phil. Trans. R. Soc. DOI: 10.1098/rsta.2009.0004. 

10 Tromp R.M., Hannon J.B., Wanb W., Berghaus A., Schaff O. (2010) A new aberration-corrected, energy-filtered 

LEEM/PEEM instrument. I. Principles and design. Ultramicroscopy, 110 (7), 852-861. 

DOI:10.1016/j.ultramic.2010.03.005. 

11 Tromp R.M., Hannon J.B., Wanb W., Berghaus A., Schaff O. (2013) A new aberration-corrected, energy-filtered 

LEEM/PEEM instrument. II. Operation and results. Ultramicroscopy, 127, 25-39. DOI:10.1016/j.ultramic.2012.07.016. 

12 Bimurzaev S.B., Aldiyarov N.U., Yakushev E.M. (2017) The objective lens of the electron microscope with 

correction of spherical and axial chromatic aberrations, Microscopy, 66 (5), 356-365.  DOI: 10.1093/jmicro/dfx023. 

13 Bimurzaev S.B., Serikbaeva G.S., Yakushev Е.М. (2003) Electrostatic Mirror Objective with Eliminated 

Spherical and Axial Chromatic Aberrations. Microscopy, 52 (4), 365-368. DOI: 10.1093/jmicro/52.4.365. 

14 Bimurzaev S.B., Yakushev E.M. (2022) Relativistic Theory of Aberrations of Electrostatic Electron-Optical 

Systems. Nucl. Instr. Meth. Phys. Res. A., 1022, 1-10. DOI: 10.1016/j.nima.2021.165956. 

15 Zhu X., Munro E. (1995) Second-Order Finite Element Method and its Practical Application in Charged Particle 

Optics. Journal of Microscopy, 179(2), 172 – 180. DOI: 10.1111/j.1365-2818.1995.tb03629.x.  

16 Bobykin B.V., Nevinnyi  Yu.A., Yakushev E.M. (1975). Electron-optical lens as a preliminary accelerator of 

slow electrons in beta-spectrometry. Zhurnal Tekhnicheskoi Fiziki, 45, 2368–2372. 

17 Gray F. Electrostatic electron-optics (1939) Bell. Syst. Techn. Journ., 18(1), 1-31. DOI: 10.1002/j.1538-

7305.1939.tb00805.x. 

18 Bimurzaev  S.B., Bimurzaeva R.S.,  Sarkeev B.T. (1991) Spatial and time-of-flight focusing in an electrostatic 

lens-mirror system with two planes of symmetry. Radiotekhnika I Elektronika, 36, 2186–2195. 

19 Yakushev E.M., Sekunova L.M. (1986) Theory of electron mirrors and cathode lenses. Advances in Electronics 

and Electron Physics, 68, 337–416.  DOI: 10.1016/S0065-2539(08)60856-2. 

20 Yakushev, E. M. (2013). Theory and computation of electron mirrors: The central particle method. Advances in 

Imaging and Electron Physics, 178, 147–247. Elsevier. DOI: 10.1016/B978-0-12-407701-0.00003-0. 
__________________________________________________________________________________________________________ 

 

AUTHORS’ INFORMATION 

Bimurzaev, Seitkerim - Professor, Doctor of Physics and Mathematics, Chief Researcher, G. Daukeev Almaty University 
of Power Engineering and Telecommunication, Almaty, Kazakhstan; Scopus Author ID: 6603367014, Web of Science 
Researcher ID: Q-9680-2016, ORCID: 0000-0001-7778-1536; bimurzaev@mail.ru  

Sautbekova, Zerde – PhD, Researcher, G. Daukeev Almaty University of Power Engineering and Telecommunication, 
Almaty, Kazakhstan; Scopus Author ID: 55946640100, ORCID ID: 0000-0001-9198-4524, zerdesautbekova@yandex.ru 

 

https://doi.org/10.1093/jmicro/52.4.365
https://doi.org/10.1016/S0065-2539(08)60856-2
https://publons.com/researcher/Q-9680-2016/
https://orcid.org/0000-0001-7778-1536?lang=ru
mailto:bimurzaev@mail.ru
http://www.scopus.com/inward/authorDetails.url?authorID=55946640100&partnerID=MN8TOARS
https://orcid.org/0000-0001-9198-4524
mailto:zerdesautbekova@yandex.ru

