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Abstract. Object detection is a fundamental task in computer vision and remote sensing, aimed at 

recognizing and categorizing different types of objects within images. Unmanned aerial vehicle - based thermal 

infrared remote sensing provides crucial multi-scenario images and videos, serving as key data sources in public 

applications. However, object detection in these images remains challenging due to complex scene information, 

lower resolution compared to visible-spectrum videos, and a shortage of publicly available labeled datasets and 

trained models. This article introduces a Unmanned aerial vehicle - based thermal infrared object detection 

framework for analyzing images and videos in public applications and evaluates the performance of 

YOLOv8n/v8s, YOLOv11n/v11s, and YOLOv12n/v12s models in extracting features from ground-based thermal 

infrared images and videos captured by Forward-Looking Infrared cameras, as well as from unmanned aerial 

vehicle - recorded thermal infrared videos taken from various angles. The YOLOv8n/v8s, YOLOv11n/v11s, and 

the latest YOLOv12n/v12s models were deployed on a Raspberry Pi 5 using the OpenVINO framework. The 

successful deployment of these models, including the most recent version, demonstrates their feasibility for 

unmanned aerial vehicle-based thermal infrared object detection. The results show that YOLOv8 and YOLOv11 

achieved high accuracy and recall rates of 93% and 92%, respectively, while the YOLOv12 model demonstrated 

good precision but comparatively lower performance in accuracy and recall, suggesting the possibility for further 

improvement. 
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1. Introduction  

Object detection is a key task in computer vision, primarily focused on classifying and locating specific 

objects within an image. Remote sensing images, captured by various sensors on different platforms, often 

contain multiple objects at various scales, making them a rich source for object detection. Remote sensing 

has been applied to spaceborne, aerial, and ground-based platforms [1, 2]. Ground remote sensing systems, 

which use platforms such as high towers, vehicles, and ships, provide valuable optically labeled datasets. 

However, there are fewer thermal infrared (TIR) datasets available for detecting multiple objects at ground 

level. Unmanned aerial vehicle (UAV) platforms, on the other hand, can capture high-resolution thermal 

images and videos, compensating for the lack of high-resolution thermal data from satellites due to sensor 

limitations. With the rapid development of UAVs, the demand for efficient and effective detection 

algorithms is growing. UAV-based TIR images are now used in precision agriculture (PA), which helps 
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optimize farming practices by detecting variations in soil and crops. However, UAV TIR platforms generate 

large volumes of unlabeled data, creating challenges for the development of transfer techniques, algorithms, 

and detection applications based on ground-labeled data [1-9]. Unlike optical sensors, TIR sensors can 

capture images in both day and night conditions. As TIR technology continues to improve, it has found 

widespread use in applications like body temperature detection, traffic monitoring, and public health and 

safety, receiving significant attention. Despite this, object detection on UAV TIR images and videos remains 

relatively underdeveloped. Previous studies have focused on pedestrian detection using TIR images in 

ground settings [3], as well as the detection of ships [4], vehicles [5], thermal bridges in buildings [6], and 

electrical equipment [7]. For instance, in [8] authors compared the accuracy and performance time of various 

surveillance systems for detecting human presence using thermal imagery. In [9] authors developed a method 

for detecting vehicles with TIR images, which was successfully applied to traffic flow monitoring. They 

demonstrated that thermal image-based object detection could be effectively used in road traffic surveillance 

[9]. 

In general, object detection and UAV technologies are growing fields with diverse applications, not 

only in computer vision and deep learning but also in areas such as COVID-19 prevention and control, 

search and rescue operations, and Advanced Driver Assistance Systems (ADAS) using thermal imaging [10]. 

Despite these advances, object detection from UAV TIR images and videos continues to face numerous 

challenges, including complex backgrounds, low resolution, long imaging distances, and the presence of 

multiple scenes and objects [11-13]. 

Recently, YOLO-based object detection in thermal infrared imagery has gained significant traction, 

offering enhanced accuracy and efficiency in diverse real-world applications. In [11], the authors proposed 

enhancing search and rescue (SAR) missions using YOLOv8 for human detection in thermal imagery, 

achieving high precision with YOLOv8n at 90%. To expand object detection beyond the visible spectrum, in 

[12] authors proposed a TIR detection framework using YOLO models for Forward-Looking Infrared (FLIR) 

cameras. In [13], the authors propose an improved Mask-RCNN algorithm for UAV TIR video stream target 

detection, enhancing efficiency and reducing storage, but with potential limitations in complex environments 

and varying target sizes. In [14], the authors introduced ALSS-YOLO, a lightweight detector for TIR aerial 

images, achieving state-of-the-art wildlife detection performance on the BIRDSAI and ISODTIR UAV 

datasets. The above-mentioned articles [9-15] demonstrate relatively good efficiency in object detection, but 

there is potential to further improve metrics such as precision, accuracy, and recall.  

This article presents an object detection framework based on thermal infrared (TIR) imaging using 

unmanned aerial vehicles (UAVs) for public applications. It evaluates the performance of the latest 

YOLOv12 models alongside YOLOv8n/v8s and YOLOv11n/11s. These models were tested on ground-

based TIR images and videos captured by FLIR cameras under both bright and dark conditions, prior to 

being applied to UAV-captured TIR videos from various angles. The YOLOv8n/v8s, YOLOv11n/11s, and 

the latest YOLOv12n/v12s models were successfully deployed on a Raspberry Pi 5 using the OpenVINO 

(Open Visual Inference and Neural Network Optimization) framework, demonstrating their feasibility for 

UAV-based TIR object detection. We believe that the proposed integrated approach has strong potential to 

enhance real-time object detection performance in public applications. 

2. Background  

2.1 YOLO models 

The YOLO architecture [16-18] consists of three core components: the backbone, the neck, and the 

head. The backbone is responsible for extracting features from the input image, while the neck and head 

process these features to generate predictions for bounding boxes, object classes, and confidence scores. The 

loss function integrates squared errors for bounding box coordinates, square-rooted differences for width and 

height, and classification errors, with weighted coefficients to emphasize both localization precision and 

object detection accuracy. Table 1 presents the structures of the YOLO models. 

YOLOv8 focuses on a lightweight architecture with CSPNet, anchor-free design, and balanced 

performance between speed and accuracy. YOLOv11 improves upon YOLOv8 by introducing C3k2 blocks 

and spatial attention (C2PSA), enhancing computational efficiency and detection precision. YOLOv12 

further refines the architecture with R-ELAN backbones, FlashAttention-driven area attention, and 7×7 

separable convolutions, achieving higher accuracy, especially for small or occluded objects, while 
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maintaining real-time speeds. Each version builds on its predecessor to optimize object detection for diverse 

scenarios [19-21]. 

 

Table 1. Comparison of YOLOv8/11/12 structure 

YOLO 

model  

Backbone Neck Activation Loss Models 

YOLOv

8 

CSPNet+CBS+C2

f 

FPN+PAN+SPPF SiLU Anchor-free 

approach 

YOLOv8n/s/m/l/

x 

YOLOv

11 

CSPNet+C3k2 FPN+PAN+SPPF+C2P

SA 

LeakyReL

U 

Bounding 

Box,Class 

YOLOv11n/s/m/l

/x 

YOLOv

12 

CSPNet+R-ELAN FPN+PAN+Area 

Attention 

LeakyReL

U 

Bounding 

Box,Class 

YOLOv12n/s/m/l

/x 

  

2.2 Evaluation metrics 

In this study, the performance of the YOLO models for object detection training and validation was 

assessed using precision, recall, accuracy, and FPS (Frames Per Second).  

Precision measures the proportion of true positive samples out of all the predicted positive samples, 

while recall measures the proportion of true positive samples out of all the actual positive samples [22-24]. 

The calculations for precision and recall are provided in Eqs. (1) and (2): 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,                                                                                                                                (1)  

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  ,                                                                                                                                     (2) 

 

TP (True Positive) refers to the number of persons that are correctly identified as persons, while FP 

(False Positive) indicates the number of instances where non-person objects are incorrectly classified as 

persons. FN (False Negative) represents the number of persons that are incorrectly classified as non-person 

objects. 

Accuracy is a common performance metric in machine learning and object detection tasks, which 

measures how many predictions the model got right (both positive and negative) compared to all predictions 

made [25-28]. It is calculated using the formula: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  ,                                                                                                                   (3) 

 

While accuracy provides a general sense of model performance, it can be misleading when there is a 

class imbalance. In such cases, other metrics like precision and recall are often used alongside accuracy to 

gain a more comprehensive understanding of the model’s performance. 

FPS is a performance metric used to measure how quickly a model can process and analyze video 

frames or images. In the context of object detection, FPS indicates how many frames the model can process 

in one second, giving an idea of the speed or real-time capability of the detection system. A higher FPS value 

means the model is able to process more frames per second, which is crucial for real-time applications such 

as video surveillance, autonomous vehicles, or drones. The ability to maintain high FPS while accurately 

detecting objects ensures that the system can operate effectively in dynamic environments where fast 

responses are necessary. In object detection tasks, balancing FPS with accuracy is important, as a model that 

runs too slowly might not be practical in real-time applications, even if it achieves high accuracy [29].  

2.3 TIR image dataset 

The FLIR Thermal Starter Dataset (FLIR, 2019) was used, which includes four object classes: person, 

car, bicycle, and dog. It contains both annotated thermal images and non-annotated optical images for 

training and validating object detection neural networks. The dataset comprises 10,288 annotated thermal 

infrared (TIR) images, featuring 28,151 persons and 46,692 cars,  as well as 4,224 video-annotated TIR 
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images, with 21,965 persons and 14,013 cars. These images were captured on streets and highways in Santa 

Barbara, California, USA, between November and May, under mostly clear sky conditions, both during the 

day and at night. The images were taken with either a FLIR Tau2 camera (13 mm f/1.0, 45° horizontal field 

of view (HFOV) and 37° vertical field of view (VFOV)) or a Boson camera. While TIR images typically 

have lower spatial resolution, smaller signal-to-noise ratios (SNR), and fewer texture features compared to 

conventional optical images, they offer the advantage of being captured both day and night. In contrast, 

optical images can only be collected during the day unless artificial lighting is available. To take advantage 

of both all-day thermal infrared imaging and the features of optical images, it was assumed that the shape 

features learned by YOLO models from optical datasets [30] for detecting persons and cars would also apply 

to TIR images. This assumption provides a solid foundation for using pre-trained models to detect objects in 

thermal infrared images, offering a reasonable starting point for effective detection in this type of imagery 

[31-33]. 

2.4. Performance of YOLOv8/v11/v12 

The Raspberry Pi 5 is a high-performance single-board computer designed for real-time processing. 

Equipped with a 64-bit Broadcom BCM2712 processor (Cortex-A76, up to 2.4 GHz) and a VideoCore VII 

GPU (800 MHz), it offers substantial improvements over its predecessors. With options for 4 GB or 8 GB 

LPDDR4X-4267 RAM, it efficiently manages multitasking and large datasets. The PCIe 2.0 interface 

facilitates external accelerator integration, boosting data processing capabilities. Despite requiring 5A and 

5V of power, the Raspberry Pi 5 remains compact and efficient for various applications [34-37]. 

To deploy YOLOv8, YOLOv11 and YOLOv12 on the Raspberry Pi 5, the trained models were 

converted to an OpenVINO-compatible format. Using OpenVINO's Model Optimizer, the best.pt file was 

converted into an Intermediate Representation (IR) model, optimizing it for more efficient execution on 

resource-constrained devices. OpenVINO is an Intel toolkit that optimizes deep learning models for CPUs, 

GPUs, FPGAs, and VPUs. It converts models from frameworks such as TensorFlow and PyTorch into IR 

format using the Model Optimizer, and the Inference Engine ensures efficient execution. When integrated 

with the Raspberry Pi 5, OpenVINO improves inference efficiency, reducing computational overhead and 

enabling real-time processing through its BCM2712 processor and VideoCore VII GPU.  

After converting the model to the OpenVINO format, the best_yolov8s_openvino_model was deployed 

on the Raspberry Pi 5. Test images stored in./test/images, along with their corresponding YOLO-format 

annotations in./test/labels, were used for evaluation. A Python script running on the Raspberry Pi 5 handles 

the complete object detection process: it loads and preprocesses images, performs inference using the YOLO 

model via OpenVINO, and compares the predicted bounding boxes with ground truth annotations. This 

workflow enables a detailed assessment of the model’s accuracy and performance in real-time object 

detection on resource-constrained hardware.  

For each test image, the following steps are performed: the image is loaded into memory, processed 

through the YOLO model to obtain predicted object coordinates, and compared with the ground truth 

annotations. Bounding boxes are visualized, with predictions shown in green and actual annotations in red, 

providing a clear indication of detection accuracy. The inference time for each image is recorded to evaluate 

real-time performance. Finally, the processed images, with bounding boxes, are saved in the./results 

directory for further analysis. This methodology ensures a thorough evaluation of both detection accuracy 

and processing efficiency. 

3. Results and discussions  

3.1 Confusion matrix and accuracy  

In Figure 1, an example of thermal reflections is shown, with thermal reflections placed in a box. To 

accurately identify the specific area of an object in a thermal image, it is crucial to detect and differentiate 

the thermal reflections. Figure 1 demonstrates that the detection capabilities of the YOLOv8, YOLOv11 and 

YOLOv12 models are suitable for use in a range of public applications and conditions. Figure 2 shows the 

confusion matrix (a, c) and accuracy curves (b, d) of the YOLOv8n/s models. The x-axis represents the true 

class labels of the samples, while the y-axis indicates the predicted results. 

In Figure 2, YOLOv8n (a) correctly identifies 213 people with 23 background instances misclassified as 

people and 6 people as background, while YOLOv8s (c) detects 212 people correctly, misclassifying 23 

background instances as people and 7 people as background. The accuracy curves in (b) and (d) illustrate the 



Eurasian Physical Technical Journal, 2025, Vol.22, No.2(52)                       ISSN 1811-1165; e-ISSN 2413-2179    125 

training process over 100 epochs, showing a sharp initial improvement followed by a gradual stabilization 

around 92%. 

 

  
(a) YOLOv8s (b) YOLOv8n 

  
(c) YOLOv11s (d) YOLOv11n 

  
(e) YOLOv12s (f) YOLOv12n 

  

Fig.1. Thermal images with thermal reflections. 

 

Figure 3 presents the results of the confusion matrix (a, c) and accuracy curves (b, d) of the YOLOv11n 

and YOLOv11s models. In Figure 3, YOLOv11n (a) accurately identifies 211 people, misclassifying 30 as 

background and 8 background instances as people, resulting in zero correctly classified background 

instances, while YOLOv11s (c) also detects 211 people correctly, misclassifying 21 as background and 8 

background instances as people, again leading to no correctly identified background instances. The accuracy 

curves in (b) and (d) illustrate the training progression over 100 epochs, showing a steep initial gain before 

gradually stabilizing around 93%. 
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a) b) 

  
c) d) 

Fig. 2. (a, c) – YOLOv8n/s confusion matrix; (b, d) – Accuracy curve 

 

 

 

 

a) b) 

 

 

 

c) d) 

  

Fig.3. (a,c) – YOLOv11n/s confusion matrix; (b,d) – Accuracy curve 
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Figure 4 presents the results of the confusion matrix (a, c) and accuracy curves (b, d) of the YOLOv12n 

and YOLOv12s models. 

 

 

 

 

a) b) 

 

 

 

c) d) 

 

Fig.4. (a,c) – YOLOv12n/s confusion matrix; (b,d) – Accuracy curve 

 

In Figure 4, YOLOv12n (a) correctly identifies 211 people, misclassifying 30 as background and 8 

background instances as people, while YOLOv12s (c) detects 210 people, misclassifying 33 as background 

and 9 background instances as people, with both models failing to correctly classify any background 

instances. The accuracy curves in (b) and (d) depict the training process over 100 epochs, showing an abrupt 

initial gain before gradually stabilizing around 90%.  

3.2 Recall and precision  

In Figure 5, the precision and recall values demonstrate the performance of YOLOv8n/s, YOLOv11n/s, 

and YOLOv12n/s over 100 training epochs. All models show rapid improvements in the first 20 epochs, 

followed by stabilization beyond epoch 50. 
YOLOv8n/s begins with a Precision of approximately 0.60 and Recall around 0.55. By epoch 20, these 

rise to about 0.88 and 0.85, respectively, and eventually stabilize at around 0.95 (Precision) and 0.92 

(Recall). YOLOv11n/s starts similarly with Precision near 0.58 and Recall at 0.50 but shows slightly more 

fluctuation during training. After minor instability around epoch 25, it reaches a stable Precision of about 

0.94 and Recall of 0.91-0.92. YOLOv12n/s outperforms both, starting stronger with Precision around 0.62 

and Recall at 0.58. It surpasses 0.90 in both metrics by epoch 20 and stabilizes after epoch 50 with Precision 

near 0.97 and Recall around 0.95. Its training curves are smoother and more stable, indicating better learning 

dynamics and generalization.  

3.3 Accuracy and FPS comparison 

Figure 6 (a, b) presents the comparative analysis of object detection accuracy and FPS for the 

YOLOv8n/s, YOLOv11n/s, and YOLOv12n/s models. According to Figure 6 (a), YOLOv8n and YOLOv8s 

achieve the highest accuracy, both nearing 0.88, indicating strong performance, while YOLOv11s also 

performs well at a similar level, suggesting optimizations in this version. YOLOv11n follows with slightly 
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lower accuracy, remaining above 0.84, while YOLOv12n is close behind. YOLOv12s records the lowest 

accuracy, approaching 0.82. According to Figure 6 (b), YOLOv11n achieves the highest FPS, exceeding 11, 

followed by YOLOv8n, which reaches approximately 10 FPS. 

 

  

(a) YOLOv8n (b) YOLOv8s 

  

(c) YOLOv11n (d) YOLOv11s 

  

(e) YOLOv12n (f) YOLOv12s 

Fig.5. Precision and recall results of YOLO models. 

 

YOLOv12n performs moderately, achieving approximately 7 FPS. YOLOv8s and YOLOv11s show 

lower performance, with FPS values around 5 and 4, respectively. YOLOv12s has the lowest FPS, measuring 

slightly above 2 FPS. Figure 7 provides a comparison of the efficiency of YOLOv8n/s, YOLOv11n/s and 

YOLOv12n/s models, showcasing their performance in terms of accuracy and processing speed. 

Figure 7 demonstrates that YOLOv8n, YOLOv11n and YOLOv12n achieve the highest FPS and 

accuracy compared to the other evaluated models. Meanwhile, YOLOv8s and YOLOv11s exhibit slightly 

lower FPS but maintain competitive accuracy, balancing speed and precision in object detection, while 

YOLOv12s demonstrates the least efficiency. 
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(b)  

Fig. 6. Accuracy and FPS comparison of YOLO models 

 

 

 
 

Fig.7. Efficiency Comparison of YOLOv8/11/12 models 

4. Conclusion  

In summary, this study assessed the performance of YOLOv8n/v8s, YOLOv11n/v11s, and 

YOLOv12n/v12s models for human detection in thermal infrared (TIR) UAV-captured imagery across 

various public applications. The results demonstrate that the YOLOv8n/v8s and YOLOv11n/v11s models 

offer notable improvements in detection accuracy (92% and 93%, respectively) and computational efficiency 

compared to YOLOv12n/v12s. YOLOv11n achieved the fastest detection speed at 11.50 frames per second, 

while YOLOv12s had the smallest model size. Additionally, the YOLOv11 models achieved the highest 

recall at 93% and strong precision of 92%. Their successful deployment on a Raspberry Pi 5 using the 

OpenVINO framework confirmed their feasibility for real-time object detection in thermal infrared imagery 

captured by UAVs.  

The use of FLIR thermal infrared cameras provides a significant advantage by capturing high-quality 

imagery in both day and night conditions, allowing for effective object detection even in low-light and 

obscured scenarios. The ability to capture images from different angles further enhances detection 

performance, providing a broader view of the scene and improving object localization and identification in 

real-world applications. Future work will focus on integrating YOLO models with FPGA hardware and 

advanced thermal infrared imaging in UAV systems, enabling ultra-efficient, real-time object detection for 

public safety and monitoring applications. Additionally, we plan to utilize improved FLIR cameras with 

enhanced resolution and sensitivity to further boost detection accuracy and reliability during both day and 

night captures. 
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