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Abstract. We propose a dvnamical systems model to study language competition and bias evolution in
structured agent populations. Each agent is characterized by a continuous bias variable representing their
linguistic preference, evolving under the combined influence of peer interactions, native language retention, and
external prestige forces. The model incorporates a nonlinear damping mechanism that confines the agent's bias
within a fixed range between negative one and one, and allows for heterogeneous susceptibility and retention
parameters. We analyvze the model in its linear regime and perform a stability analysis of the fixed points under
both symmetric and asymmetric network topologies. Simulations on fullv connected and small-world networks
reveal diverse dynamical scenarios, including language death, bilingual persistence, and spontaneous population
bifurcation into opposing linguistic groups. The results provide insight into the interplay of social structure,
identity, and external influence in shaping language dvnamics.
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1. Introduction

The evolution of languages in a globalized, interconnected society is shaped by complex interactions
between individuals, their cultural identities, and external sociopolitical forces. As some languages grow in
dominance while others face extinction, mathematical modeling offers a powerful framework to understand
the mechanisms driving these dynamics. Previous studies have highlighted mechanisms of language death
[1], bilingual coexistence [2], and the effects of social structure [3—10]. Language dynamics have also been
explored using agent-based models [11], adaptive networks [12], and hybrid learning schemes [5,13]. The
inclusion of prestige effects [1,14], inter-linguistic similarity [2], and stochasticity [13,15] enriches the
modeling landscape. The study of language dynamics offers a compelling application of nonlinear
dynamical systems, a core area in technical and applied physics. Our approach formalizes language bias
evolution using continuous variables and differential equations on complex networks, employing techniques
common in statistical physics, control theory, and systems engineering. Furthermore, the model’s structure—
governed by agent-level dynamics and influenced by network topology—parallels the analysis of
synchronization [16], signal propagation, and collective behavior in engineered and physical systems [17—
21]. This cross-disciplinary perspective aligns with the broader goal of applying physical modeling
paradigms to complex social and technical systems.

In this work, we present a novel model of language bias evolution in agent-based populations,
incorporating network-based peer influence, native language retention, and external prestige effects. The
goal is to identify conditions that lead to outcomes such as language death, bilingualism, or stable language
coexistence.
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2. The Model

We consider a system of agents that speak either language A or language B, or both. Since in reality,
even if people are bilingual, it is quite often that their language competence is not absolute for both
languages. For example, if a person’s native language is A, and at some point in his life, the person learns the
language B, the level of competence is rarely the same as a native level. In this work, we construct a

mathematical model of agents, with a dynamic variable being the “bias” ¢, towards one or the other
language: @, =+1 if the person speaks only language A, ¢, =—1 if the person speaks only language B, and

-1< ¢, <+1 if the person is bilingual. If the person perfectly speaks both languages at the same level, the
value of ¢, =0, which means that the person does not have any preference in choosing the language. If the

value of ¢, is positive, then we say that the person is bilingual, but with a preference for language A.

How does this bias change over time? The first and foremost purpose of a human language is
communication with other people, and the bias naturally changes due to the social connections of the person.
If a group of people speaks the same language at the same level, their bias and proficiency level do not

change, hence ¢, =0 for the agents of this group (a dot over a variable denotes derivative over time). But if a

group of people with different levels of language proficiency and bias are connected, for example, a
foreigner with an intermediate level of language proficiency is connected to a group of native speakers, then

there is a natural drive to change the bias ¢, #0. To model this behavior, we consider a simple diffusive
coupling model

N

¢k:(1_¢:)zLﬁf(¢j_¢k)s (1)
J=1

where fis the coupling strength, which is an odd function, and L & 1s the connectivity matrix, i.e., L, =0 if

agents j and & are not connected, and L, =1 if they are connected. Naturally Z,, =0. The term 1— #; is
added to introduce natural fixed points in the model at values ¢, =+1 and to dampen the dynamics near

these points, so that the values of the bias remain in the domain @, € [—l,l] .

At this point, our model lacks individuality of the agents, such as preference of the native language. Let
us introduce the new term, describing the native language retention

.

¢k:(l_¢:) Zijf(¢j_¢k)+ykg(}?k_¢k) s (2)

where 77, =41 is the native language parameter, and g(77; —(ﬁk) is the retention function that controls the

bias towards the native language of the individual agent. We assume that people have a natural tendency to
lean towards their native language, due to various reasons, like cultural heritage, historical, philosophical, or

political influence, etc. The parameter ), is the strength of individual agents’ retention. Small values y,

indicate that an agent is easily biased toward the other language, while large values indicate that the agent is
deeply rooted towards its native language, e.g., “zealot” or “patriotism” parameter. It is obvious that the
function g has to be an odd function as well.

Last, but not least, we have to consider the “status” of the language, described in [1]. The idea is that in
reality, different languages have different perceived status of prestige. This factor appears for various natural
reasons, such as the number of people speaking the language, the media influence, the access to information
and education, etc. In our model, we introduce the influence term as

¢k:(1_¢:) Zijf(¢j_¢k)+}/kg(Uk_¢k)+ﬁkh(P_¢k) ’
3)
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where Pe [+1,+1] is the prestige field parameter, and S, is the susceptibility parameter of an individual

agent. Small values /3, indicate that an agent is not easily influenced by an external influence, while large

values indicate that the person is easily manipulated by an external influence, e.g., “zombie” parameter. Here
h is also an odd function.

In our model, the bias of an agent depends on three factors: (i) the social network; (ii) the retention
strength of the native language and its “patriotism” parameter; (iii) the prestige factor of the language,
influenced by external sources and the “zombie” parameter of an agent.

3. Linear model

Although, our model is built for arbitrary functions f, g and /, in this paper we analyze only the linear
case

¢ =(1-4:) Z%ﬁ'(%—@)m-(?rk—@)wk-(l’—%)}- (4)

As we will see, even the simplest linear model has rich behavior. Another advantage of a linear model,
is that its stability can be treated analytically.

3.1. Stability analysis

The non-trivial fixed points gﬁ: of the model (4) are found as solutions of

N
Zl‘jké;_(ck+ﬁk+yk)¢;+yk}r}k+ﬁkpzoﬂ (5)
J=1
* N _: * v
where ¢, are the fixed points of all the other equations for agents and ¢, = Zij . Writing ¢ = (¢1 yees ,(ﬁ_v)
j=1
the equation (5) can be expressed in the vector form
where
b, =y, + B.P,
Ay :5jk(ck +ﬁk+}/k)_ija (7)
where &, is the Kronecker’s delta. Now, the fixed points are obtained as
¢ =4"b. ®)

To perform the linear stability analysis, we can write the biases as ¢k(r) = qé; +e,( .f), where ¢, is a

small perturbation, and leave only the linear terms in &, . This procedure yields

de, 2\ = '
?x(l_(%) ) D2Lie—alc+B+r)|, ©)
J=1
or in the matrix for
9e_ v, (10)
dt

N
T . . .
where & =(¢,,..., 6‘_¥) and M is a diagonal matrix

diag(M)=1-(4;) - (11)
In the case of symmetric coupling L, =L, or an undirected network, the matrix is also symmetric and

strictly diagonally dominant, since
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N
Ay =+ BtV d, =—L =4, - >[4, (12)
j=1

Assuming that L, € [0,1] and B, =0,y, =0, we can say that the matrix 4 is positive definite, which
means that all its eigenvalues are real and positive. The diagonal matrix M is also positive, since by
definition ‘;ﬁk ‘ <1. Although we cannot say that —M4 it is symmetric, it is similar to a symmetric negative-

definite matrix. This means that all the eigenvalues of the system’s Jacobian are real and negative, which

implies global stability of the fixed points (é* .
For the directed network case L, =L, , we cannot guarantee that all the eigenvalues are real and

negative, and more complicated dynamics might arise. The special cases are the fixed points gé; =+1. In that

case 6:k =0, which indicates the marginal stability of these points.
3.2. Network topologies

It is obvious that our model crucially depends on the topology of the network connections L - In

general, the elements of the matrix L s can have arbitrary values, not only 0 or 1, and can describe the

connection strength between agents j and & . In this work, we consider only the undirected network cases,
meaning that the connection matrix is symmetric. It is, however, obvious that for arbitrary network
topologies, whether the matrix L s 1S symmetric or not, its diagonal elements should always be zero. As a

measure of the entire network behavior, we will use the mean field bias <¢(r)> defined as

(¢(r)>=§2¢5 () (13)

and its standard deviation. Here, we consider a few models that mimic certain real-life scenarios.

3.2.1. Fully connected network

The fully connected network, when all agents are identically connected to all the other agents, is the
simplest connection topology. This simplicity is useful for analytical predictions and benchmarks, despite
being quite unrealistic. However, a fully connected network can be reasonably accurate to model small
communities, when everyone knows each other, or specific corporate networks, when everyone is connected
to the same internal communication network. Usually, such networks produce a very coherent state when all
the agents are aligned together. In such cases, it can be interesting to influence the mean field of the system
by an external field, to see if it is possible to drive the mean field to an opposite polarity.

3.2.2. Small-world network

A small-world network, as introduced by Watts and Strogatz [22], interpolates between regular lattices
and random graphs by introducing a small probability of long-range rewiring. In the context of our work, this
topology captures the balance between local clustering, representing tightly connected communities, and
occasional long-range interactions, such as those enabled by modern communication or migration. The
small-world structure is particularly relevant for modeling realistic social systems, where individuals tend to
interact more frequently within close groups but still maintain weak ties across the broader population. This
heterogeneity can give rise to rich dynamical phenomena, including the formation of linguistic clusters,
polarization, or partial synchronization.

4. Results and discussion

Let us now consider a few typical scenarios that we could model using (4). One of the standard
scenarios is the language death, when the entire population eventually starts to strongly prefer only one of
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the languages. To achieve this scenario, we can construct a simple fully connected network of identical
agents, meaning that they have the same native language 7, , and the same susceptibility to the prestige field

P, . Setting the prestige field P to an opposite language, we create a strong influence on the system.

To analyze the final state, we can draw certain thresholds for bias variables that mark danger zones for a
language. This means that when the entire population’s bias enters this zone, with a strong preference for a
specific language, this puts the other language into danger of extinction.

In Figure 1, we have shown a simulation of the dynamics of a mean field ((ﬁk) of N =100 agents for
different values of y .
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Fig. 1. The dynamics of the mean field (gﬁk) over time for different values of the parameter ¥ .
The simulation is performed for a fully connected network of identical agents, with native language parameters
1, = —1 and prestige susceptibility /3, =1.0. The prestige field is set to P =+1, while the initial states of the agents
are uniformly distributed within 4, = U(_[]_g,_ 1_0).

We can see that initially, the bias of all agents is strongly in favor of the native language. Exposed to an
external prestige field P, their bias eventually leans towards the opposed language. We can see that if the

patriotism parameter }; is small, the original preference for the native language can be overcome, putting it
in danger of extinction. However, the strong patriotism (7, =1.0 in the plot) can result in a bilingual
outcome.

In the next scenario, we model a system initially localized at zero (bilingual bias), but eventually split
the population into two distinct groups (Figure 2). To obtain such a state, we configured a system with half
the population with a native language A(7, = +l), while the other half with a native language B(r;k = —1) .
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Fig. 2. The simulation of the linear system for NV =1000 agents. On the left, we can see the evolution of the
mean field (solid line), and although it stays almost unchanged, the standard deviation (shaded area) becomes very
large. On the right, there is a final distribution of the biases, with clear two separate peaks.
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If the initial state of the system is strongly bilingual, then it generally tends to stay that way. In order to
separate the population, we need to tweak the parameters in a specific way. First, in order to diminish the

external influence, we set the zero-prestige field P =0, and a very small susceptibility S5, =0.01. Next, we

set the entire population to be very patriotic, with a high value of y, =3.0. Finally, the network topology
was chosen to be a Watts-Strogatz small-world network.

5. Conclusion

In this work, we introduced a dynamical systems model to describe language bias evolution in
populations embedded in social networks. By treating linguistic preference as a continuous variable and
incorporating native identity retention, prestige influence, and agents’ interactions, we developed a
framework capable of capturing a wide range of realistic language dynamics scenarios.

Analytical results from the linearized model provide insight into the stability of fixed points. Numerical
simulations on fully connected and small-world networks further illustrate how the interplay between
topology and parameter heterogeneity governs the long-term outcomes.

This model not only advances the mathematical treatment of language competition but also exemplifies
how methods from applied physics, particularly those related to networked systems and dynamical stability,
can be effectively applied to social phenomena. Future work may extend this framework to incorporate
dynamic networks, agent mobility, or feedback between bias and network structure, offering even deeper
integration with techniques from complex systems and control theory.
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