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The article discusses and expands the known elements of the eight-vertex model, paying special attention to 

the parameterization of the matrix. The matrix values are interconnected with the knot through the braids and this 

model is valid on finite square lattices in two-dimensional space. A new solution of the parametrized eight-vertex 

model of free fermions with a complex version of elliptic functions, which is valid on a finite lattice, will be 

constructed. The range of applicability of the eight-vertex model with elements of the Jacobi elliptic function and 

the construction of a knot invariant on its basis is discussed by comparing the results obtained analytically for the 

model. The construction of the knot invariant using the Clebsch-Gordan coefficients and the main tool of 

statistical mechanics of the Yang-Baxter equation will be studied in detail. 
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Introduction 
 

In recent years, scientists in the fields of mathematics and physics have been diligently pursuing related 

theories, especially the theory of knots, which has generated interest for a small number of scientists and has 

since become one of the most fashionable hobbies of mathematicians, physicists and even geneticists. This, 

in turn, gave rise to a number of methods linking two, at first glance, very distant from each other areas of 

mathematics and physics: knot theory and statistical mechanics.  

In [1], the Boltzmann weights of the doubled Ising model, parametrized using elliptic functions, are 

considered, and an alternative way of checking the Yang-Baxter equation in the parameterization of matrix 

elements using the star-triangle equation is shown. Thus, in [2], a quantum decomposition of the eight-vertex 

model was introduced and a set of closure properties in various regions of the parameter space was proved. 

In [3], it was proved that the sixteen-vertex model gives an exact description of the thermodynamics of 

artificial spin ice models. The work [4] confirms the complexity dichotomy theorem for the eight-vertex 

model. For each setting of the model parameters, the calculation of the partition function is proved, which is 

either solvable in polynomial time or is P# - complexity. 

 The paper investigates the solution of models of statistical mechanics and knot theory, which in turn, 

this connection is occupied by the Temperley-Lieb algebra [5] and the Birman-Murakami-Wenzl algebra 

(BMW) [6]. Also, in [7], the latest research on the connection of vertex models of statistical mechanics with 

the main problems of mathematics is studied. The origins of the connection with physics go back to the very 

close relationship between the state models of knot polynomials and the partition function in statistical 

mechanics. This connection in [8] led to the construction of a number of invariants that go beyond the 

original skein polynomials. Thus, in the source [9], the Jones polynomial in a closed braid is the partition 

function of the statistical mechanic’s model on the braid. The work [10] summarizes procedure outputting 

braid generator representations from three-partite vertex model. This representation made it possible to study 

the invariant of a knot with multi-colored links, where the components of the knot have different spins. The 

formula for the invariant of knot with a multi-colored link is studied from the point of view of the braid 

generators obtained from the R-matrices of three-partite vertex models. The resulting knot invariant 52 

corresponds to the Jones polynomial and HOMFLY-PT. Description of Boltzmann weights and finding 𝑆𝑂 

(𝑁) for any 𝑁 spin vertex model of algebra in [11] opened up new problems in the field of statistical physics. 

The representations of the braid group in [12], obtained from rational conformal field theories, can be used to 

obtain explicit representations of the Temperley-Lieb-Jones algebras. In the source [13], the Yang-Baxter 

equation provides both an algebraic and a graphical method in knot theory. The method of commuting 
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transfer matrices in [14] for this equation is a generalization possibility for solving the eight-vertex model. 

The solution to the quantum Yang-Baxter equation [15] is an R -matrix, which corresponds to the transfer 

R -matrix of the eight-vertex model of statistical mechanics. 

The method for solving invariants is associated with multi-colored links [16], with the statistical sum of 

the Chern-Simons theory [17] and with obtaining the topological solution (2) of the Chern-Simons theory on 
3S  [18]. In similar sources, as in [19], the connection between the invariant of knot theory and a new ten-

vertex model of statistical mechanics was studied using the transition of a commuting transfer matrix, 

including Boltzmann weights in the braid matrix. Subsequently, in the source [20], the solutions are 

described using the Clebsch-Gordan coefficients and the transformation matrix. 

Thus, in [21], the exact solution of the classical two-dimensional eight-vertex model is the greatest 

achievement in the field of exactly solvable models and the contradiction with the hypothesis of universality 

and independence of critical indicators from interaction details was studied in the early 70s.  All these studies 

have found a place in the connection of the eight-vertex model with elements of elliptic functions and knot 

theory. 

In this paper, we consider obtaining braid generators from an eight-vertex model by parametrizing 

matrix elements with a suitable normalization factor using the quantum form of the Clebsch-Gordan 

coefficients, the so-called j3  - symbol. The solution is based on the observation that the rows in the transfer 

matrices commute for a specific parametrization of the four Boltzmann weights. The presented solution will 

help to understand how to find the connection between the invariants of knots and lattice models of statistical 

mechanics through the mathematical apparatus of quantum physics.  

The work plan is as follows. In Section 2, we consider the construction of braid matrices from the )(uR

-matrix of eight-vertex models for the same spins and the derivation of an algebraic formula for the knot 

invariant. Section 3 generalizes the procedure for defining a new representation of the braid generators from 

a )(uR -matrix associated with a parametrized vertex model with elliptic functions, and proposes a solution 

to the invariant of a knot with links. Section 4 presents the results of the work. 

 

1. Parameterized 8-vertex model 
 

The parameterized eight-vertex model is a generalization of the six-vertex model, where spins 
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To construct the braid generators 
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b , we take the limit 0u  and divide the elements of the previous 

matrix by the Boltzmann weight )0()( ,
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normalization so that the matrix elements are finite, as shown below 
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The Wess-Zumino conformal field theory implies a compact relation for the braid generators 
i

b  

obtained from 21
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monodromy matrix in 
k

SU )2(  [22], where the values of the permutation matrix 

)0()(
1

)( 21

21

2121

21

,

,

,2

1
,

2

1

,

,

2

1
,

2

1







uRPR
nn

mm

jjnn

mm
, )0()( 21

21

21 ,

,

,
 uR

jj

jj

jj
 are the normalization factor 

 




















 





Mnn

Jjj
jj

Mmm

Jjj
PuRPR

J

jjJ

nn

mm

jjnn

mm

21

21

21

12

212

1
,

2

1

,

,

,2

1
,

2

1

,

,

2

1
,

2

1

),(
1

)0()(
1

)( 21

21

2121

21
 , (3) 

where 
2121

= nnmmM   and the elements in brackets 
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 denote the quantum form of 

the formula for the Clebsch-Gordan coefficient  CGq   [23]. Matrix elements can be expanded in this way  
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Therefore, it is possible to define the 








2

1
,

2

1
i

b  matrix form of the braid generators using the R  matrix. 

Thus, we calculate the knot invariant by the formula 

 


     HATrA

l

j

j
n

jjjjj

n

2

2

, 























, (5) 

where l  - sum of exponents 
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Initially, there is only one braid generator 
i

b , for all braids 2
BA , the matrix form of which will have 

the form 44 , where the matrix elements are expressed by elliptic functions with a complex version 
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An invariant in the equation (5) for knot 1 will be developed according to the Rolfsen table. For knots 

and links obtained by closing the words of braid 
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For example, knot 
136

10  is word braid 
10

136
bA  . It is important that such an action of the word braid on 

a braid of five strands implies the following order of the matrix operation on the initial state 
221

,;, mjmj  
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From the above it follows that to derive the eigenvalue, depending on the spectral parameters 
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 jj  such, belong to the parametrized eight-vertex model on a square lattice. 
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accordingly, the eigenvalues of the matrix elements are elliptic functions with a complex version 
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and the general view of the R -matrix will be 
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








1
,,

1

,,

][.
13313131 jjjjjjjj

RRRR , (21) 

 
























1
,,

1

,,

][.
23323232 jjjjjjjj

RRRR . (22) 

Thus, we have the opportunity to represent matrix forms ],[
21

jjb
i

 of groupoids that satisfy the 

constructions of the braid generators 

   
1,,

21
][]][,[ 2121 jj

i

jj

ii
bbjjb , (23) 

   
1,,

12
][]][,[ 1212 jj

i

jj

ii
bbjjb , (24) 

in this form 

 
2

1
,

1

21

21

],[

















i

jj

i

i
Rjjb     , (25) 

 
2

1
,

1

12

12

],[

















i

jj

i

i
Rjjb     . (26) 

As a result, using the matrix representation, for any word of the braid A , the closure of which will give 

multicomponent links at the knot. Similarly to the link invariant formula (5), we present the following 

formula for the fermionic link invariant, in which the components of site  Ajj 21 ,



  have the same spins. The 
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invariant of a multi-colored knot (up to a general deformation coefficient of 2

1

q ) for a four-component link, 

where the components of the knot have the same spins, obtained by closing any r -strand word of braid 
136

10  

is given by the formula А  

        HATrqAqA
il

jj

C

jj

C

jj 


 22

1

,
2

1

136, 21
21

)10(  , (27) 

where the first factor derives the conditioning factor from q  with an integer of C , which depends on the 

spins, bending and the number between the constituent knots of the engagement. 
i

l 's is the number of strands 

in the braid generator, that is, when spin 
i

j  is in a 5 -strand braid A  , where 




n

i

i
rl

1

. In addition, the 

matrix representation of H  depends on the order of such repeating spins occurring in the r -strand braid. 

This article describes a 5 -strand braid obtained from a 
136

10  knot, with a j  weave on all strands, which 

implies 

 
21 jj

hhH  . (28) 

Coming back to the matrix operations for the word of braid A , we use formula (11), following the 

sequence of closure of each link in the braid, where each strand has the same spins mentioned above. From 

the above definition, 
ij

h 's (6), 
ij

  and 
ij

 's (7). In the next section, we will calculate in detail the invariant of 

knot 
136

10  with the same link. 

 

2. Knot invariant with fermionic junction 

At this point of the work, we will find the invariant of a knot with links with spins 
2

1
21
 jj , for this 

we first need to write the word for a braid of n  strands that tracks the spins. For knot 
136

10 , consisting of the 

links obtained by closing the five-strand braid and the matrix representation looks like this 
 

21425

1

2

1

54

1

35136
)10( bbbbbbbbbbA  , (29) 

and 
2

1

2

1
hhH   will give 

  





2

5

136

2

1
,

2

1
)10(

k
A  , (30) 

where 
2qk  , 

   3232 11 qqqqqq  , 

      228
111 qqq  , 

1211102

19

92

17

82

15

72

13

62

11

52

9

42

7

32

5

2

2562048692896

12176320103524725964645429464

59647210352320121769669282048256

qqqq

qqqqqqqq

qqqqqqqq







, 

which is consistent with the Jones polynomial calculated on the basis of 𝑆𝑈 (2) Chern-Simons theory, braid 

generators, and a fermionic parametrized eight-vertex model. 

 

3. Results and discussion  
 

The paper discusses the construction of a braid group representation using the weighted Boltzmann 

coefficients of the eight-vertex model, where adjacent edges have different spins. In particular, a matrix 

representation of braid generators from eight vertex models has been developed. Using the Yang-Baxter 
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formula for the knot invariants, the Jones polynomial for the knot 
136

10  is explicitly evaluated. Finally, the 

procedure for determining a new representation of braid generators from a R -matrix associated with a 

parametrized vertex model with elliptic functions is generalized, and a new knot invariant 
136

10  is obtained 

when studying knots and connections using the Chern-Simons theory. Based on these results, the author 

comes to the conclusion that the knot invariant is proportional to the two-particle Jones polynomial, where 

the group representation 𝑆𝑈 (2) is used, which has state spins on the edges crossing the vertex. In conclusion, 

the process of finding the knot invariant is described, which is used to find the partition function of the 

previously known eight-vertex model. 

 

Conclusion 
 

In the course of work on the article, a completely new R -matrix of a two-particle parameterized eight-

vertex model with the identical links was obtained from the representations of the braid group for the only 

knot  
136

10  in the Rolfsen knot table, which has a strand index less than the width of its minimum braid. In 

addition, the R -matrices defined on braids and constructed by the Markov theorem and the Reidmeister 

motions are obtained with exact results for the new parametrized eight-vertex model.  

Further, we saw that the eight-vertex model is constructed as a modified extension of the integrable six-

vertex model and in the three-dimensional positional space elementary particles with half-integer spin are 

one-dimensional representations of the permutation group acting on the space of wave functions. As a result, 

it was found that the knot invariant of site 
136

10  is proportional to the two-particle Jones polynomial, where 

the group representation 𝑆𝑈 (2) is used, which has state spins 
21

, jj on the edges intersecting the vertex. In 

conclusion, the process of finding the knot invariant, which is used to find the partition function of the 

previously known eight-vertex model, is described.  

Further research could fruitfully solve problems in knot theory and statistical mechanics, including the 

Jones polynomial. Therefore, the problem of graph isomorphism in knot theory and the statistical system 

may turn out to be an important area for future research. 
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