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Gold nanowires with polyelectrolytes adsorbed on their surface are widely used in various biomedical 

research. In this work, for the first time, conformational changes in polyelectrolytes on the surface of a gold 

nanowire transversely polarized in an external electric field were considered. The properties of a specially 

created analytical model of conformational rearrangements of a Gaussian macromolecular chain adsorbed on the 

surface of a cylindrical metal nanowire in an external electric field transverse to the axis of the nanowire were 

investigated. Conformational changes of uniformly charged polypeptides on the surface of a transversely 

polarized gold nanowire have been studied using molecular dynamics simulation. On the basis of the analytical 

model and the results of molecular dynamics simulation, the spatial distributions of the density of polyelectrolyte 

units on the surface of the nanowire were constructed. With an increase in the strength of the external electric 

field, an asymmetric stretching of the polyelectrolyte fringe in the direction of the dipole moment of the 

transversely polarized nanowire was observed. 
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Introduction 

Plasmonic nanorods and nanowires with polymer molecules adsorbed on their surface are widely used 

for biological nanoprobes based on the effect of surface-enhanced Raman scattering, as well as for creating 

various chemical sensors [1–7]. In this case, of particular interest is the control of conformational changes in 

adsorbed macrochains under the influence of an external electric field in order to create similar nanoprobes 

and sensors with controlled characteristics [8–14]. 

Previously, the authors studied electrically induced conformational changes in macromolecular chains 

on the surface of gold nanoobjects of spherical [15–17] and cylindrical [18–20] shapes, as well as on the 

surface of gold prolate nanospheroids [21–23] and the flat surface of a gold crystal. It was shown that under 

the influence of both a static external electric field and microwave electromagnetic radiation, the 

conformational structure of polyelectrolyte chains adsorbed on the surface of metal nanoobjects changes 

significantly, and at the same time depends on the shape of the nanoobject. At the same time, it is of interest 

to study conformational changes in polyelectrolytes with a uniform distribution of charges of the same sign 

along the entire macrochain on the surface of a metal cylindrical nanowire or nanorod polarized in the 

transverse direction in a static electric field, which was not disclosed in previously published works [18-20]. 

Therefore, the purpose of this work is to study the conformational changes of uniformly charged 

polyelectrolytes on the surface of a metal nanowire transversely polarized in an external electric field. For 

this, two approaches will be used: a statistical description of the macromolecular fringe layer and molecular 

dynamics (MD) simulation. 

 
1 Formation of a macromolecular fringe layer on the surface of a cylindrical nanowire: a 

mathematical model 
1.1 Mathematical model of formation of the fringe layer of a polyelectrolyte 

macromolecular chain on the surface of a transversely polarized nanowire  

A change in the conformations of macrochains of a polyelectrolyte adsorbed on a nanowire can be 

carried out by an external electric field that polarizes the conductor. In the simplest model, polymer 

molecules are represented as ideal Gaussian chains, but the attraction of links to the surface of the adsorbent 
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is taken into account. The intensity of the quasi-static field outside the cylinder of radius R, i.e. when Rr   

and placed in the field 0E  has the form [24] ( ,x yn n  are the unit vectors of the Cartesian coordinate 

system) 
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The adsorption potential of the surface of a circular nanowire in the case of van der Waals adsorption 

can be effectively represented by a combination of the simplest model potentials “solid wall–delta functional 

well”: )()()( 01 rrRVrV    [18]. When a nanowire is placed in a uniform electric field, its 

potential becomes dependent on the angular variable   in the cross-sectional plane as a result of conductor 

polarization. Then the potential of the total field in the space outside the nanowire with the polarized 

component Ex(t) can be written as the sum 
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 – the energy of interaction of a polyelectrolyte unit carrying a charge e with the primary external electric 

field and the polarization field of the wire. The dielectric constants 21 ),(   in (3) characterize the 

nanowire metal and the environment, respectively.  

To study the spatial structure of the macrochain, a conformational function ( ) r  is introduced that 

satisfies a Schrodinger-type differential equation [25] 
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where a is the size of the chain link; T is the temperature of the colloidal solution. In the case of a sufficiently 

weak external field, potential (3) can be taken into account in the framework of perturbation theory. Equation 

(4) with potential (2) contains an angular variable, so it should be written in the form 
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Solution (5) can be represented as ( ) ( ) ( )mF r  r , where ( )m   is the eigenfunction of the 

projection operator of the quantum orbital angular momentum with integer m: ( ) 1/ 2 exp( )m im    . 

For the radial function ( )mF r  (5), we obtain the equation [19] 
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Here in (6) the radial potential 1 2( ) ( ) ( )V r V r V r  , and 2 ( )V r  is defined by the relation 
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The equation for the function ( )mF r  without taking into account the polarization part 2 ( )V r  of the 

potential is obtained from (5), and can be written in the form 
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In the absence of a potential )()()( 01 rrRVrV   , equation (7) is the Bessel equation for 

cylindrical functions ( )mZ  . Thus, the solution to (7) are the Bessel functions of the imaginary argument 

( )m mI q r  и ( )m mK q r , 
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    . Then, as solutions of equation (4) with a certain index m in the 

field 1( ) ( )V r V r , decaying at infinity, we can write the following expressions 
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The constants mA , mB  and mC  are found from the following boundary conditions and conjugation 

conditions that the functions  (r) must satisfy 
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The last equation in (9) allows us to determine the only discrete level of the spectrum m  for each 

integer index m [19]. For m =0, we arrive at the problem with circular symmetry of the distribution density 
2( ) ( )n r r  of links, which we have already studied earlier in a number of papers. 

In the general case of an arbitrary index m, to determine the parameters mq  and m  it is necessary to 

use the equation 
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and from the other two equalities (9) there are relations between the constants mA and two other constants 

mB  and mC . 

Then solutions (8) take the form 
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Substituting (11) into (10) we obtain the general transcendental equation for the eigenvalues mq  

 
2

2

0 0 0

0

( )
( ) ( ) ( ) .

6 ( )

m m
m m m m m m

m m

I q Ra kT
I q r K q r K q r

r K q R
 

                    (12) 



22  ISSN 1811-1165 (Print); 2413-2179 (Online)  Eurasian Physical Technical Journal, 2022, Vol.19, No.2 (40) 

 

It was shown in [19] that the functions (11) with m=0 and m=1 are especially important for constructing 

the first-order perturbation theory. In this case, the density 
2( , ) ( , )n r r    of links of the adsorbed 

macrochain will still be determined by functions (8) or (11) with index m=0, and eigenvalues 0 . The first-

order corrections to the eigenvalue 0 , when perturbations 2 0( , ) cos ( , )PV r eE r V r      are taken 

into account, are equal to zero for states (8) or (11) [19]. However, the correct use of the Rayleigh-

Schrodinger perturbation theory requires taking into account states (11) with m=1 to clarify the basic states 

0 0( ), ( )I IIF r F r  in the field of a polarized nanowire. 

1.2 Calculations based on the conformational model of an adsorbed Gaussian chain on 
the surface of a transversely polarized nanowire 

Based on the results of calculations using formulas (1)–(12), spatial distributions of the density of 

polyelectrolyte units on the surface of a transversely polarized metal nanowire were constructed. All link 

density distributions are presented normalized to the value of the local density maximum. 

 

   
a b c 

   
d e f 

   
g h i 

Fig. 1. Spatial distributions of the density of polyelectrolyte units on the surface of a transversely polarized 

nanowire at different external electric field strengths E0 (directed along the x axis): 104 (a, d, g), 105 (b, e, h), 106 

V/cm (c, f, i). Other parameters: e’= - 0.1 |e|, R=1.5 nm, r0=2 nm, α=5∙10-3 eV∙nm, T=300 K, a =0.5 nm. 

 

Figure 1 shows the spatial distributions of the density of polyelectrolyte units at different external 

electric field strengths E0: 104 (Fig. 1a, 1d and 1g), 105 (Fig. 1b, 1e and 1h) and 106 V/cm (Fig. 1c, 1f and 1i). 

In this case, the following parameters were set in expressions (1-14): link charge e’= - 0.1 |e|, nanowire 
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radius R=1.5 nm, location of the potential well from the nanowire axis r0=2 nm, potential well depth α=5∙10-3 

eV∙nm, temperature T=300 K and link size a=0.5 nm. As can be seen from Figures 1a–1c, with an increase in 

the strength of the electric field directed from left to right, the links of the polyelectrolyte macrochain are 

shifted to the right positively charged region of the transversely polarized metal nanowire. At a low electric 

field strength, the polyelectrolyte almost uniformly envelops the nanowire (Figs. 1a, 1d, and 1g). At the same 

time, the higher the electric field strength, the stronger the differences in the density of polyelectrolyte units 

over the cross section of the nanowire (Fig. 1d-1f) for fields of different strengths, and the more the edge of 

the macrochain shifted to the positively charged region of the polarized nanowire. 

 

   
a b c 

   
d e f 

Fig. 2. Spatial distributions of the density of polyelectrolyte units on the surface of a transversely polarized 

nanowire at different charges of its unit e: - 0.05 (a, d), - 0.1 (b, e), - 0.15 |e| (c, f) Other parameters: R=1.5 nm, r0=2 

nm, α=5∙10-3 eV∙nm, T=300 K, a =0.5 nm, E0=105 V/cm (directed along the axis x). 

 

Figure 2 shows the spatial distributions of the density of the polyelectrolyte units for different values of 

the charge of the polyelectrolyte unit: - 0,05 |e| (Fig. 2a and 2d), - 0.1 |e| (Fig. 2b and 2e) and - 0.15 |e| (Fig. 

2c and 2f) and a constant value of the external electric field E0=105 V/cm. The following parameters were 

used in expressions (1)-(12): R=1.5 nm, r0=2 nm, , α=5∙10-3 eV∙nm, T=300 K, a=0.5 nm. It can be seen that 

as the charge of the polyelectrolyte link increases, the fragments of the macromolecule in the cross section of 

the nanowire are increasingly shifted towards the positively charged pole. At the same time, the density of 

macrochain links in the positively and negatively charged regions of the transversely polarized nanowire 

differs the more, the greater the absolute value of the charge of the polyelectrolyte link (Fig. 2d-e). This is 

due to the fact that with an increase in the absolute value of the macrochain charge, the electrostatic forces of 

interaction between the macromolecule and the polarized nanowire increase at a constant potential well 

depth α, which leads to a displacement of the edge of the charged polyelectrolyte into the oppositely charged 

region of the nanowire. 

In addition, when modeling on the basis of expressions (1)–(12), the influence of variations of other 

theory parameters on the structural rearrangement of the fringe of a polyelectrolyte molecule adsorbed on the 

surface of a transversely polarized nanowire was estimated. Figure 3 shows the spatial distributions of the 

density of polyelectrolyte units at different temperatures: 250 (Fig. 3a), 300 (Fig. 3b) and 350 K (Fig. 3c) 

with unchanged parameters: e’=- 0.1 |e|, R=1.5 nm, r0=2 nm, α=5∙10-3 eV∙nm, E0=105 V/cm, a =0.5 nm. It 

can be seen from the figure that, at a constant external electric field strength, an increase in the temperature 

of the colloid leads to the fact that the polyelectrolyte units move freely over the surface of the nanowire and 

the macrochain uniformly envelops the nanowire. This is due to the fact that the kinetic energy of the 

macrochain links exceeds the potential barriers caused by attraction to the surface of the nanowire. The same 

effect takes place when the depth of the potential well α decreases. Thus, when the depth of the potential 

well decreases from 6∙10-3 eV∙nm to 4∙10-3 eV∙nm and the values of the parameters in expressions (1)-(12) 
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equal to e’= - 0.1 |e|, R= 1.5 nm, r0=2 nm, T=300 K, E0=105 V/cm, a =0.5 nm, the fringe around the nanowire 

also took a shape similar to the case of high temperature (Fig. 3c), i.e. uniformly enveloping the nanowire. 

The same effect was caused by a decrease in the nanowire radius from 1.7 nm to 1.3 nm or an increase in the 

link size from 0.45 nm to 0.55 nm with unchanged parameters: e’= -0.1 |e|, α=5∙10-3 eV∙nm, T= 300 K, 

E0=105 V/cm. 

 

   
a b c 

Fig. 3. Spatial distributions of the density of polyelectrolyte units on the surface of a transversely polarized 

nanowire at different temperatures T: 250 (a), 300 (b), 350 K (c) Other parameters: e’=- 0.1 |e|, R =1.5 nm, r0=2 

nm, α=5∙10-3 eV∙nm, a =0.5 nm, E0=105 V/cm (directed along the axis x). 

2 Molecular dynamics simulation 

In this work, MD simulation of uniformly charged polypeptides consisting of 800 amino acid residues 

was performed on the surface of a cylindrical gold nanowire polarized in the transverse direction in an 

external electric field. The model of a gold nanowire was obtained by cutting a cylinder with a radius of 1.5 

nm and a length of 15.5 nm from a gold crystal, and its atoms remained fixed during the MD simulation. 

The following negatively charged polypeptides have been considered: 

1) polypeptide (A10DA9)40, consisting of 760 Ala units (A, neutral) with uniformly distributed 40 Asp 

units (D, charge -1e), the total macrochain charge was    -40e; 

2) polypeptide (A5DA4)80, consisting of 720 Ala units with 80 Asp units uniformly distributed (total 

macrochain charge -80e); 

3) polypeptide (A2DA2)160, consisting of 640 Ala units with 160 Asp units uniformly distributed (total 

macrochain charge -160e).   

MD simulation was performed using the NAMD 2.13 software package [25]. For polypeptides, the 

CHARMM22 force field was used [27]. Non-covalent interactions with a gold nanowire were described by 

the Lennard-Jones potential parameterized in [28]. The Van der Waals potential was cut off at a distance of 

1.2 nm using a smoothing function between 1.0 and 1.2 nm. Electrostatic interactions were calculated 

directly at a distance of 1.2 nm, and at greater distances, we used Ewald’s particle–mesh approach (PME) 

[29] with a grid step of 0.11 nm. The entire nanosystem was placed in a cube with 24 nm edges filled with 

TIP3P water molecules [30]. To control the obtaining of equilibrium conformations, the change in the root-

mean-square distance between polypeptide atoms in different conformations (RMSD) was monitored. MD 

simulation was performed at a constant temperature at 900 K with a subsequent reduction to   300 K. 

First, such conformational structures of macrochains were obtained, in which the polypeptide enveloped 

the surface of the nanowire. For this purpose, MD simulation of negatively charged polypeptides on the 

surface of a positively charged gold nanowire (surface charge density +3.3e/nm2) was carried out. Three 

starting conformational structures of each polypeptide were obtained for MD simulation on the surface of a 

transversely polarized gold nanowire. 

If the external electric field vector is directed transversely with respect to the axis of a cylindrical metal 

nanowire, then electric charges will be induced on the surface of the nanowire with a surface density 

proportional to the cosine of the angle between the directions of the electric field vectors E and the normal to 

the surface [31]: 




 cos
2

E
                                                              (13) 
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Therefore, the local electric field of a nanowire polarized in the transverse direction was set by 

assigning partial charges to nanowire atoms located on its surface according to the cosine law (13). The 

following values of the induced dipole moment of the nanowire per unit of its length were obtained: 0.75, 

1.5, and 3 kD/nm. In this case, on the surface of the nanowire, the maximum value of the induced partial 

charge of the atom in the positively charged region of the polarized nanowire was +0.125e, +0.25e, and 

+0.5e, respectively. 

2.1 MD simulation results 

  
a b 

  
c d 

Fig. 4. Polypeptide (A2DA2)160 in the starting conformation (a), as well as on the surface of a transversely 

polarized gold nanowire with a dipole moment (directed upwards): 0.75 (b), 1.5 (c) and 3 (d) kD/nm (the blue tube and 

red symbols denote Ala and Asp residues, respectively). 

 

Figure 4a shows the starting conformational structure of the (A2DA2)160 polypeptide, which was 

obtained at the end of MD simulation on a positively charged nanowire, with the macromolecular chain as a 

whole uniformly enveloping the nanowire. Figures 4b–4d show that as the dipole moment of the nanowire 

increases in the transverse direction, the macromolecular chain shifts more and more to the positively 

charged region of the nanowire (in the upper half of the cross section). At the maximum value of the dipole 

moment of the nanowire (Fig. 4d), almost all amino acid residues are located in the upper positively charged 

region of the nanowire. An exception is the only positively charged N-terminus of the polypeptide, which 

remained in the negatively charged region of the nanowire. A similar picture of displacement of negatively 

charged macrochain units to the positively charged region of the transversely polarized nanowire was 

observed for polypeptides (A10DA9)40 and (A5DA4)80. 

Figure 5 shows the average angular dependences of the distribution of atoms of the polypeptide 

(A2DA2)160, which were calculated with a step of 10 degrees along the cross section (a negatively charged 

pole in the nanowire cross section corresponds to an angle of 180 degrees, and a positively charged pole 

corresponds to an angle of 0 degrees). This figure shows that, in the starting conformation (curve 1), a 

generally uniform distribution of atoms of uniformly charged polypeptides around the nanowire is observed. 

At the value of the dipole moment of the nanowire equal to 0.75 kD/nm, a small part of the polypeptide 
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atoms shifted to the positively charged region of the nanowire (curve 2), and already at the value of the 

dipole moment of the nanowire equal to 1.5 kD/nm (curve 3), most of the amino acid residues of the 

polypeptide shifted to the positively charged region. nanowire area. Similar mean angular distributions of 

atoms were also observed for other considered polypeptides. 

 

Fig. 5. Average angular dependences of the distribution of atoms of the polypeptide (A2DA2)160 on the surface of a 

transversely polarized gold nanowire. In the figure, the numbers denote the values of the dipole moment of the 

nanowire: 1) – 0, 2) – 0.75, 3) – 1.5 and 4) – 3 kD/nm. 

  
a b 

 
c 

Fig. 6. Radial dependences of the average density of atoms of the polypeptide (A10DA9)40 (a) and (A5DA4)80 (b) on the 

surface of the positively charged half of the transversely polarized nanowire at dipole moment values: 1) – 0, 2) – 0.75, 

3) – 1.5 and 4 ) – 3 kD/nm. Radial dependences of the average atomic density of polypeptides (A10DA9)40 (c, 1), 

(A5DA4)80 (c, 2), and (A2DA2)160 (c, 3) on the surface of a positively charged region of a transversely polarized gold 

nanowire at a dipole moment of 3 kD/nm. 
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Figure 6 shows the radial dependences of the average density of polypeptide atoms on the surface of a 

positively charged region of a transversely polarized nanowire for various values of its dipole moment. It can 

be seen that as the dipole moment of the transversely polarized nanowire increases (Figs. 6a and 6b), the 

density of polypeptide atoms near the surface decreases more and more. This is due to the fact that when 

similarly charged units are displaced to the upper region and, accordingly, their number increases there, the 

polyelectrolyte fringe swells due to bulk interactions between macromolecule units. It is also seen in Fig. 3c 

that at the maximum value of the dipole moment of the nanowire considered for the polypeptide (A10DA9)40 

with the lowest density of charged units per macrochain length unit, the curve of the radial dependence of the 

density of polypeptide atoms is significantly lower than for the other two polypeptides. This is due to the fact 

that with an increase in the number of charged units per unit length of the polypeptide, the force of 

electrostatic attraction between the positively charged region of the transversely polarized nanowire and the 

negatively charged polypeptide increases. 

Conclusion 

Based on the expressions of the analytical model for the formation of a macromolecular fringe layer on 

the surface of a cylindrical metal nanowire, the conformational changes in the uniformly charged 

polyelectrolyte adsorbed on it under the action of a transversely directed external electric field were 

calculated. As the strength of the external electric field increased, an asymmetric stretching of the 

polyelectrolyte fringe was observed in the direction of the dipole moment of the transversely polarized 

nanowire. In this case, the links of the macrochain of the charged polyelectrolyte shifted to the oppositely 

charged pole along the cross section of the nanowire, and the like-charged pole became exposed relative to 

the charged macromolecule. An increase in the macrochain charge per unit of its length at a constant strength 

of the external transverse electric field led to an ever greater displacement of the polyelectrolyte fringe into 

the oppositely charged region of the transversely polarized nanowire. The influence of other parameters 

included in the obtained expressions of the mathematical model on changes in the polymer fringe of the 

adsorbed polyelectrolyte of the transversely polarized nanowire was evaluated. An increase in temperature, a 

decrease in the depth of the potential well, a decrease in the nanowire radius, and an increase in the link size 

led to the fact that the asymmetry of the pattern for the polyelectrolyte fringe disappeared and the 

macromolecular chain uniformly enveloped the transversely polarized nanowire. 

The obtained picture of the density distribution of macrochain units is in qualitative agreement with the 

conformational structures of uniformly charged polypeptides adsorbed on a gold, transversely polarized 

nanowire, which appear as a result of the performed MD simulation. In the case of MD simulation, the 

asymmetric stretching of the polypeptide fringe in the direction of the dipole moment of the transversely 

polarized nanowire also occurred. In this case, the higher the value of the dipole moment of the gold 

nanowire and the greater the number of charged amino acid residues of the same sign per unit length of the 

polypeptide, the stronger the macrochain shifted to the oppositely charged region of the transversely 

polarized nanowire. In this region of the nanowire, the macromolecular fringe gradually swelled due to bulk 

interactions between the charged units of the macromolecule. 

The asymmetric stretching of the polyelectrolyte fringe with an increase in the strength of the external 

electric field is due to its effect on the charged links of the macrochain. Under the influence of an external 

force, which leads to a decrease in the possible conformations of the macrochain, elastic forces arise that 

prevent such a rearrangement of the macromolecule and are of an entropic nature [25]. As the possible 

conformations of a macromolecule decrease, its conformational entropy also decreases. With an increase in 

the strength of the external electric field, the forces acting on the charged macrochain increase, which begins 

to shift to the oppositely charged region of the transversely polarized nanowire. In this case, the elastic 

forces, which are of an entropic nature, prevent this and tend to return the shape of such a fringe that evenly 

envelops the nanowire. In MD simulation, in addition to the entropy factor, the shape of the polyelectrolyte 

fringe on the surface of the transversely polarized nanowire is also affected by the force factor associated 

with volumetric interactions of macromolecule units with each other. 

Such a rearrangement of the conformational structure of adsorbed uniformly charged macromolecules 

adsorbed on the surface of a metal nanowire, which occurs under the influence of an external, transversely 

directed electric field, can find practical application in the creation of new or modification of existing 

bionanoprobes and sensors that based on the effect of surface-enhanced Raman scattering and are sensitive to 

exposure to an external electric field. 
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We can also note further prospects for such studies of conformational changes in adsorbed 

polyelectrolytes on the surfaces of gold nanoparticles. Of great interest, in addition to spherical [15–17] and 

cylindrical [18–20] nanoobjects, is the study of conformational rearrangements on the surface of spheroidal 

gold nanoparticles with different anisotropy in order to obtain nanosystems with tunable plasmon 

characteristics. On the surface of a prolate [21–23] or oblate spheroidal nanoparticle, both charged and 

polarized along the rotation axis, the distribution of electric charges differs significantly from the cases of 

charge distribution on the surface of polarized spherical or cylindrical nanoobjects. Such an inhomogeneous 

distribution of charges on the surface will lead to the fact that on the surface of both charged and placed in a 

static or alternating electric field nanospheroids, the polyelectrolyte fringe will have a unique shape, 

depending on the ratio between the lengths of the major and minor axes of the nanospheroids. 
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