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The paper proposes an approach to object tracking for public street environments using dimensional based 

object detection algorithm. Besides the tracking functionality, the proposed algorithm improves the detection 

accuracy of the dimensional based object detection algorithm. The proposed tracking approach uses detection 

information obtained from multiple cameras which are structured as a mesh network. Conducted experiments 

performed in a real-world environment have shown 10 to 40 percent higher detection accuracy that has proved 

the proposed concept. The tracking algorithm requires negligible computational resources that make the 

algorithm especially applicable for low-performance Internet of things infrastructure. 
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Introduction  

Different object tracking algorithms are actively used in applications for automatic traffic monitoring, 

surveillance, and security. Typical purposes of object tracking algorithms are identification of an object in a 

video scene (e.g. in consecutive video frames) and prediction of possible object locations in the future. The 

problem of object tracking is extensively researched in the area of computer vision [1–4], however, these 

algorithms still have a number of limitations: high computational requirements to a processing unit [1], [5] 

strong dependency of tracking accuracy on image quality (environment illumination, contrast, resolution, 

etc.) and varying object representation between frames [6]. There are some implementations of tracking 

algorithms [7,8] which use background subtraction as a detection technique that can be applied on low-

performance computational platforms, however, such an approach does not provide object classification 

functionality as needed e.g. by Smart Lighting applications [9]. For sure, as a low computational power 

solution, global positioning system (GPS) tracking algorithms can be used instead of computer vision 

methods [10], however, it makes devices for such tracking more complicated and expensive from hardware 

point of view. 

The proposed algorithm combines the tracking approaches described in the references above to create a 

new tracking system that includes a computer vision approach and GPS coordinates extraction that can be 

executed on low-performance hardware in real-time. The tracking method is developed in a frame of the 

smart city applications, in particular, diverse smart lighting systems aimed at energy saving and lighting 

pollution reduction via effective control of the street lamps. The decision to switch the lamp on is made 

depending on object presence in the street. Each lamp of such a system has its (fixed) GPS coordinates, a 

low-performance computation unit (e.g. Raspberry Pi based), and a low-resolution camera. The camera data 

is processed by the real-time detection algorithm (DBOD) [11]. This detection algorithm provides to the 

system a number of object parameters: object class affiliation probability, coordinates of the object in real 

world coordinate system, and approximate real-world dimensions (height and width) of the object. All the 

street lamps inform neighbors about the moving objects [12] through a common wireless mesh network. The 

tracking algorithm in this system improves the detection accuracy of a particular lamp by taking into account 

the object detection information received from the lamps which have previously detected the object. 
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1. Tracking algorithm description 

The proposed tracking algorithm accumulates the object detection information from multiple nods. The 

previously obtained information affects a decision about an object class affiliation on an active node.  

The following requirements must be satisfied before applying the proposed tracking method: 

 the nodes can communicate through a common network; 

 a basic object detector outputs the detection result in a form of an object class probability 

(confidence score); 

 GPS coordinates of each particular node are known; 

 the route distance between the neighbors is known to the nodes. 

When an object has been detected in the street for the first time, the system registers properties of this 

object (table 1): a unique ID, GPS coordinates, probabilities of class affiliation, estimated real-world 

dimensions and its velocity. The velocity parameter is calculated based on GPS coordinates and 

corresponding timestamps (according to the equation 1). These properties are continuously updated after 

each detection cycle and broadcasted to the mesh network. These parameters are received by the neighboring 

nodes and stored as a history set for further calculations.  

, 

 

(1) 

where  – the approximate Earth radius; ,  – latitude and longitude in radians;  –timestamp. 

 
Table 1 - Data structure of the detected object 

Detected object  Example 

ID (10-byte string) 5b759d52b4 

GPS array (latitude, longitude) [(51.1657442, 12.3555677), … ,  (53.1453441, 11.1345685)]
*
 

Object width (m) [0.65, …, 0.33]
*
 

Object height (m) [1.77, …, 1.85]
*
 

Velocity (km/h) [3.2, …, 2.5]
*
 

Object class probability [p_pedestrian=0.7, p_cyclist=0.1, p_vehicle=0.1, noise=0.1] 

Timestamp (Unix time) [1607554893, …, 1607554899]
*
 

*
the new value is appended to the array after each detection iteration  

 

The tracking algorithm proposes solutions for the two most common scenarios of camera installation in 

the street: with and without overlap of the camera's angles of view (AOV). Decision about applying the 

concrete scenario depends on the camera’s installation scenario which are shown on Fig. 1. 

  
a                   b 

Fig.1. Handover scheme: a) explicit handover; b) implicit handover 

 

In the first scenario (Fig. 1a) the object is observed by both cameras (cam1and cam2) simultaneously, 

when the object enters the mutual area M between the cameras. If cam2 finds an object which has the same 
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coordinates as cam1, the object inherits the label assigned by cam1. The transition of the object between 

cam1 and cam2 is referred to as explicit handover. The properties of the object are recalculated during the 

handover that leads to cumulative precision growth of the system. The object detection probability is 

recalculated in the following way [13]: 

,  

(2) 

where  – an updated probability of detection based on probabilities from N sources;  – a probability 

of i-th source; N – a number of sources. 

In the second scenario, there is no mutual area between the lamps (Fig1b), therefore the system will try 

to predict the coordinates and timeframe of an object's appearance in cam2 AOV based on information 

obtained from the camera cam1. This scenario is referred to as implicit handover. The implicit handover case 

is error-prone since the object enters the area of uncertainty and can be interpreted as another or new object 

at the moment of the next detection. To authenticate the object several verifications should be made.  

Firstly, the system checks whether the recent value of the dimensional parameter (width and height) 

belongs to the inter quartile range (IQR) [14] of the object dimensions history set. To calculate a timeframe 

of expected object appearance in the area of the next camera the IQR of object velocities is used. Having a 

distance between areas of observations it is possible to calculate the time interval of the object's expected 

appearance in the area of the neighboring camera.  

5. Experimental results  

To confirm the effectiveness of the developed tracking algorithm a number of experiments in a real-

world street scenario have been conducted. These experiments include movements of pedestrian, cyclist, and 

vehicle during nighttime.  The points of observation have been equipped with Logitech C920 HD cameras 

which captured images with a resolution of 320x240 pixels. The horizontal AOV of the camera was equal to 

40º.  The angles of the camera incline varied in the range of 10 – 30º. The height of the camera installation 

lays in the range of 3.5 – 4.5 m. The tested environment included 6 areas which are shown in Fig. 2. 

 

 
Fig.2. Map of the experiment area 

These areas comprise scenarios of explicit and implicit handover shown in Fig.1. So the transition 

between areas A0 and A1 is an implicit handover case. Transitions between other areas that have mutual 

regions (A1 – A6) operate explicit handover. Each individual camera detection results are shown in Fig. 3. 

These images represent a route of the same pedestrian shown in Fig. 2. Image 0 corresponds to the time t0, 

images 1-3 have been taken at times t1, image 4 –t2, and images 5, 6 – at time t3. 

The detected object is highlighted by a green rectangle and has a class affiliation with corresponding 

probabilities. The green-colored values are the un-updated probabilities. The probabilities for all objects 

classes are plotted in Fig.4a. According to this plot, the detection probability does not exceed 0.85. The 

lowest detection probability is 0.34 that is below the chosen decision threshold [11] and leads to 

misclassification.  

The red-colored values in Fig. 3 are reinforced by previous observations. The updated probabilities are 

recalculated using equation 2 and plotted in the in Fig. 4b. As can be seen, the cumulative probability update 

increases the reliability of the system by 10 to 40 percent since the system becomes more rigid to sudden 
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errors. For example, misclassifications that are made by node 1 for the pedestrian class and by node 4.5 for 

the cyclist class have been corrected using observations history. The curves for the pedestrian and cyclist 

classes approaching detection probability to value of 1.  

 

 
Fig.3. The pedestrian movement in the experiment area observed from multiple cameras 

 

 

  
a b 

Fig.4. Object class prediction probabilities: a) without cumulative update; b) with cumulative update 

Conclusion 

The described tracking algorithm covering explicit and implicit handover scenarios has been 

implemented and tested on a public street of a small town in Germany. The proposed tracking algorithm has 

increased the overall reliability of the system by 10 to 40 percent. The tracking method workability has been 

proved by the results of experiments on the setup in a real-world environment. The experiments on low-

performance computational equipment have shown negligible extra load of central processing unit (CPU) 

load of the tracking algorithm. These CPU requirements make possible applying the proposed tracking 

approach in real-time on low-performance hardware in contrast to existing analogues. These results can be 

achieved via the nodes communication in a mesh network. In spite of tracking method specifics, the idea of 

such tracking can be generalized and applied in other scenarios of object tracking.  

There is a frame for further investigations and improvements. The behavior of the tracking system 

should be refined under more complicated object movement scenarios, e.g. high traffic intensity. The 

important question is finding suitable method for estimating an object geometrical similarity. In the case of 

implicit handover, the object location prediction mechanism can be improved for a better object 

identification in areas of uncertainty.  
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