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A simple semi-analytical method for determining the heat transfer coefficient from cylindrical 

surfaces is proposed. The idea of the method is based on the representation of the heat wave and the 

self-similar nature of the process, which allows to obtain an analytical formula. The physical 

explanation of heat transfer coefficient decrease is given. A comparison of the approximate solution 

with the numerical solution of the heat propagation problem shows the high accuracy of the analytical 

formula. The distribution of heat from the pipe into the cold surrounding space at large times with high 

accuracy can be considered a self-similar process. 
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Introduction  

When carrying out engineering calculations [1, 2] of heat losses by heat pipes in the 

environment, the heat transfer coefficient   in Newton's heat transfer law is an uncertain value 

)( cTTj   , 

where j  the flow of heat; Tw  the surface temperature of the tube wall; Tc  temperature 

environment.  

However, the heat transfer coefficient is assumed to be constant [1], this method can be taken 

only as an approximation, it gives acceptable results in a limited time interval. But a detailed 

analysis of the common methods for determining the heat flow j needs a thorough check and 

justification, since the problem of the distribution of heat from the heated pipe into the surrounding 

space is not stationary. This means the time variation of the heat transfer coefficient. 

In this paper we propose a method for determining the heat transfer coefficient (t) as a 

function of time t. For this purpose, the known [3] representation of the heat wave and the 

assumption of the approximate nature of the self-similar heat propagation are used. Below, a brief 

explanation of this representation is given by the example of heat propagation from an unbounded 

flat wall, after which the heat transfer by an infinite length pipe to the surrounding cold 

environment is analyzed. 

1. Heat transfer coefficient between the wall with a constant high temperature 
and the environment. 

Let there be a semi-bounded space (wall) with constant temperature Tw, the wall contacts a 

semi-bounded medium with low temperature T0: Tw > T0. The wall occupies a half-space x < 0, the 

medium is located in the region x < 0.  The equation of heat propagation in the environment with 

thermal diffusion coefficient   is described by the equation 
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We will look for the temperature distribution in the form 
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where t   is the beginning of the self-similar heat propagation regime, this time must be 

found from the condition of equality of the heat flow from the exact solution of equation (1) and the 

heat flow found from the approximate solution of the same equation below.  

Calculate the derivatives: 
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Substituting them into equation (1), we obtain 
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Its General solution is 






z

z

d
e

CCT

0

12 




, 

where C1, C2 - are constant integrations. 

Let z = z0 be equal to T = Tw, then C2 = Tw. Therefore 
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The wall and the environment begin to exchange heat at the initial time t = 0, after which the 

heated heat layer x0(t), which is a moving wave, "breaks away" from the wall (Fig. 1). To the left of 

this wave, the temperature T  Tw, is stored, to the right of the wave front, the temperature is a 

variable and depends on the x coordinate and time t. Therefore, the requirement used above 

z = z0:      T  Tw, 

means statement of a boundary condition on the front of this heat wave. 

The second boundary condition requires the equality T = T0 for z  . Fulfilling this 

condition, we obtain: 
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Dene the constant C1: 
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With this result, you can write 
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The coordinate of the heated layer depends on the time as 

)(4)( 00  ttztx  . 

This shows the existence of arbitrariness in the choice of the constant z0. This arbitrariness 

arose due to the lack of a clear indication of what should be taken as the coordinate of the heat 

wave. 

 
Fig.1. Location of the boundary x0(t) of the heat wave at two different times t1 and t2; 

1  real temperature profile; 2 – approximate profile. 

 

But the integral in (2) converges at any (positive) values of z0, including z0 = 0. Then it would 

be logical to choose the lower limit of integration equal to this zero value, and instead of (2) we 

obtain 
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Find the heat flow jw at the boundary of the systems, including on the one hand the wall with 

the heat wave and the environment on the other hand. This boundary is located at the point x = x0(t) 

= 0, i.e. the "separation" of the heat wave does not occur. By definition 
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As a result, taking into account the equality z0 = 0, the expression is obtained 
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This shows that the heat transfer coefficient  equal 
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The decrease in the heat transfer coefficient is easy to explain from a physical point of view: as 

the cold space warms up, it will heat up and accumulate heat, and this is the more the closer to the 

plate. The plate is covered with a heat shell, and the thickness of this shell gradually increases. As a 

result, heat transfer through it deteriorates. The outer boundary of this thermal shell is associated 

with a "heat wave" moving at a speed of dx0/dt, so the representation of such a wave has a physical 

justification. The number  easy to calculate analytically, making the inside of the integral the 

change of variable  = s
2
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And the final expression for the heat transfer coefficient will be 
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The corresponding formula (3) for temperature can be recorded via the erf error function: 
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If we choose z0  0, we would get an approximate solution to the problem, and the closer z0 is 

to 0, the closer the approximate solution is to the exact solution. The case z0  0 corresponds to 

approximate temperature distributions in Fig. 1. It can be seen that in some complex cases 

(discussed below), when it is not possible to find an exact analytical solution to the problem of 

thermal conductivity, it is possible to obtain approximate solutions using the idea of "heat wave". 

One of these cases is the propagation of heat from a cylindrical region into an infinite space, and 

below we proceed to its detailed analysis. 

2. Heat transfer coefficient between a pipe with a constant high temperature and 
an infinite surrounding cold space. 

For cylindrical and spherical problems, the exact self-similar solution cannot be obtained 

analytically. Therefore, such geometries are of interest for the application of the approximate 

method, the idea of which is given above. Consider the cylindrical problem below. 

Choose a cylindrical coordinate system with the center of symmetry on the pipe axis with 

radius R, the radial coordinate r is counted from this axis. Along the axis of the pipe, the 

temperature in it Tp is constant, so for the environment with the initial temperature Tc, the heat 

equation in the form of 
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In mathematical form, initial and boundary conditions are strictly set in the following form: 

const),0(  cTrtT , 

cp TrtTTRrtT  ),(,),( . 

We find an approximate solution to this problem using the idea of a heat wave. Instead of the 

given boundary conditions, we take other: 

cp TrtTTtrrtT  ),(,))(,( 0 ,                                                                                        (5) 

where r0(t)  the front of the thermal wave. 

Now we are looking for the solution of equation (4) as a function of one self-similar variable 

containing the characteristic time t = const: 
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Calculate the derivatives: 
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Taking into account the received expressions the equation (4) turns into the ordinary 

differential equation 
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Its General solution contains integration constants C1 and C2: 
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The obtained results can be given the following physical interpretation: the pipe is surrounded 

by a thermal "shell" and its radius varies according to the law r0(t) (Fig. 2). 

 
 

Fig.2. Location of the boundary r0(t) of the heat wave at two different times t1 and t2: 

1 - real temperature profile; 2 - approximate profile. 
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In the region r < r0(t) the temperature is constant and equal to Tp, in the region r > r0(t) the 

temperature changes according to the first equality in (6). The same figure shows the exact and 

approximate temperature distributions at different times. Within the shell thickness, the temperature 

is constant and equal to Tp, this is laid down in the first boundary condition of (5). Therefore, when 

z = z0, the equality T = Tp Must be executed, using the first equality in (6) we find C2 = Tp. The 

number z0 remains an indefinite value because of the uncertainty of time t, it has the physical 

meaning of the conditional time when the wave mode of heat propagation begins. But now we can 

say that the law of changing the thickness of the shell has a specific relationship: 

)(4)( 00  ttztr  .                                                                                                                 (7) 

The expression for temperature now takes the form 
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Using the second boundary condition of (5) with this form T(z) we obtain 
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Find the heat flow j from the pipe to the environment, this flow must be calculated at the point 

r = r0: 
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The second equation of (6) is used to calculate the temperature derivative. From here we can 

see that the heat transfer coefficient for the pipe is 
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Thus, the formula for the heat transfer coefficient with two uncertain parameters  and t is 

obtained. It cannot be calculated only from the analysis of equations (8) and (9), to determine the  

and t need an accurate solution to the problem. The exact solution is assumed to be obtained by 

numerical solution of equation (4) with reduced boundary and initial conditions (5). 

3. Comparison of approximate solutions with the results of numerical solution 
of the problem of heat propagation from a heated pipe to an unlimited cold space. 

The following problem was solved numerically to determine the parameters  and t and to 

check the accuracy of the obtained result for the heat transfer coefficient (9) 
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Boundary and initial conditions:  
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Here  coefficient of thermal diffusion:  = /(c), where   coefficient of thermal 

conductivity; c  capacity;   density. 

This problem simulates the propagation of heat from a pipe of radius R to an infinite space, in 

which at the initial time the temperature was Tc, the temperature of the pipe is constant and equal to 

Tp (Fig. 2). In formula (7), the numerical values of the parameters  and t remain undefined. To 

determine them, it is necessary to compare the heat fluxes determined in the numerical solution and 

in the approximate way according to the formula (12) below. The condition of maximum proximity 

of these heat fluxes is used to determine  and t. An implicit scheme [4, 5] was used for the 

numerical solution. In the numerical solution, the heat flux on the pipe surface is determined by the 

equation 
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where T1 and T0 = Tp   are the temperature values at the nodes respectively with numbers i = 1 

and i = 0. 

In parallel, together with the definition (11), the calculation of the heat flow is carried out 

according to the formula 
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Here the numerical values of the parameters   and t are chosen so that the heat flux jt 

coincides with the calculated flux j0 by the formula (11). 

After finding  and t required to carry out the evaluation of the integral 
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where the lower limit of integration z0 must be chosen such that the calculated integral 

coincides with the previously found value . 

The calculations are performed with the following physical parameters: R = 0.1 m,  = 1.2 

W/(mK),  = 3000 kg/m
3
, c = 1200 J/(kgK), these data give the ratio  = 3.3310

7
  m

2
/s. The 

ambient temperature is Tc = 5 C, the temperature on the pipe surface Tp = 117 C. The values  = 

1.828; t = 50 s; z0 = 0.810
5

.  

For Fig.3 the values of the heat flux from the pipe calculated by the formula (12) and its exact 

value by the results of the numerical solution of the equation (10) are given. The time on the 

horizontal axis is given in hours. As shown in Fig. 3 the values of the heat flux in the two methods 

of calculating the heat flux are very different only at the beginning for a few tens of seconds. In the 

subsequent time difference is weak. 

The change in the radius of the heated zone r0(t) in time is shown in Fig. 4. Knowledge of r0(t) 

does not give much practical use, because we need to know the heat flow to calculate the heat loss 

from the pipeline. The radius r0(t) is mainly of theoretical interest. 

The temperature distribution T(t, r) is shown in Fig. 5 by results of numerical solution of 

equation (10). Due to the low coefficient of thermal conductivity, the heating of the surrounding 

pipeline is slow, more than nine hours the heat wave has shifted by less than 0.8 mm. 
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Fig.3. Dynamics of heat flow calculated by the formula (12) - (j0, curve 1),  

and from the result of numerical solution of equation (10) (jt, curve 2). 

 

 

 

 
Fig.4. The dependence of the radius r0(t) on time. 

 

 

 

 
Fig.5. Numerical results of determining the temperature distribution in the vicinity of the pipe at 

different times: cu. 1  t = 4.17 hours; cu. 2  t = 9.72 hours. 
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Conclusion 
 
Let us explain the physical nature of the decrease in the heat transfer coefficient: due to the 

large temperature difference in the pipe and the surrounding space, at the initial time there is a 

powerful heat transfer, but as the medium warms up near the pipe, a heated layer is gradually 

formed around it and the layer thickness gradually grows. As a result, around pipe a thermal 

"cushion" is created, the heat from the pipe must pass through this "cushion" before entering the 

cold area of the environment. Thus, the increasing heat "cushion" leads to blocking the heat loss 

from the pipe, which means a decrease in the heat transfer coefficient. 

The main result of the study is a simple formula (12), taking into account the variability of the 

heat transfer coefficient. It is very convenient to use when carrying out engineering calculations of 

heat loss in thermal networks, and the results obtained on its basis will allow solve more precisely 

problems of design and optimization of thermal networks. 
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