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The article is devoted to the study of plate bending problems, which are of great applied 

importance and are found everywhere in various branches of science and technology. In this article the 

structure of the calculation methods is described, their main components are highlighted; the classical 

approach of calculating rectangular plates hinged supported on two parallel sides and with arbitrary 

boundary conditions on each of the other two sides is characterized. The mathematical apparatus of the 

method of trigonometric series is presented in the volume necessary for calculating the plates. Special 

cases of the calculation for the bending of a rectangular plate by the Levi method are given. This article 

is focused mainly on mechanics, physicists, engineers and technical specialists. 

 
Keywords: bending of a rectangular plate, plate deflection function, boundary conditions of the plate, 

equation of S. Germain, Navier solution, Levy solution. 
 

Introduction 

Now plates are widely used in various fields of science and technology – in mechanics, 

physics, chemistry, construction, engineering, instrumentation, aviation, shipbuilding, etc. This is 

due to the fact that the inherent lightness and forms rationality of thin-walled structures are 

combined with their high bearing capacity, efficiency and good manufacturability. 

The plate can be applied as an independent structure or can be part of the used lamellar system. 

For example, in the construction plates have all kinds of applications in the form of floorings and 

wall panels, reinforced concrete slabs to cover industrial and residential buildings, slabs for the 

foundations of massive structures, etc. Therefore, knowledge of the theory for rectangular plates 

bending and of classical methods for calculating them is necessary for a modern engineer (Fig. 1). 

 

 
Fig.1. Plate bending. Bending waves 

 

One of the elements of thin-walled spatial systems is a rectangular plate, which has numerous 

independent applications. An example of a rectangular plate, clamped with one edge, is a vertical 

panel, and an example of a plate, elastically clamped with three edges, is the wall of a rectangular 

reservoir. It should be noted that thin plates are a very extensive type of plates and are more often 

used in many fields of science and technology (Fig. 2). 
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                 a)                                              b)                                               c) 

 

 
                 d)                                                 e)                                               f) 

 

 
                   g)                                               h)                                             i) 

 
Fig.2. Application of plates:  

a) contact plates; b) mounting plate; c) titanium plates of body armor; d) technical plate for road equipment; 

e) wall-mounted film heater; f) building plates and slabs; g) copper sheets and plates roof; 

h) plates in an alkaline apparatus of water ionization; i) Earth satellite 

 

Many analytical and numerical calculation methods are used to study the problems of plate 

bending [1- 3]. An exact solution in analytical form for such problems is possible only in some 

particular cases of the geometrical type of the plate, the load and the conditions for its fixation on 

the supports, therefore, for engineering practice, approximate, but sufficiently accurate methods for 

solving the considered boundary value problem are of special importance. 

When considering the plate bending problems, the methods of double and single trigonometric 

series are the most interesting because of connection with their possible numerical implementation 

in the Maple software package [4]. 

1. Navier solution  

For a rectangular plate ( ax 0 , by 0 ), hinge supported around the whole contour, we 

are looking for the desired function ),( yxW  of the plate deflections in the form [5] 
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The solution in the form of (1) is possible because (1) satisfies the boundary conditions of the 

hinge support on the plate contour. The given load ),( yxf  is also decomposed into a similar 

trigonometric series 
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where coefficients mnf  are determined by the formula 
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In the particular case of a uniformly distributed load of intensity q  we obtain 
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Under the action of the concentrated force P , applied at the point of the plate with the 

coordinates dycx  , , we have 
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Substituting the expressions (1) and (2) into the basic resolving equation of S. Germain 

 

 yxfWD , ,                                                                                                                      (3) 

 

where D  is the cylindrical rigidity of the plate, W  is the biharmonic operator, we find the 

values mnA . After substituting the values mnA  in (1), we obtain that the plate deflections are 

determined by the formula 
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An example of calculating a square plate )( ba  , loaded with a uniformly distributed load q  

with Poisson's coefficient 3,0  is given in [6]. 

2. Levy solution 

We consider the case of a plate ( ax 0 , by 0 ), in which only two opposite edges have a 

hinge support (for example, 0x  and )ax   and the other two edges have arbitrary boundary 

conditions. 

We present the desired function of plate deflections ),( yxW  in the form [7] 


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1

sin),(
n

nn xYyxW  ,                                                                                                           (4) 

where )(yYY nn   is an unknown function, which is chosen so that expression (4) satisfies the 

resolving equation S. Germain (3) and boundary conditions on the edges 0y  and by  .  

It is obvious that expression (4) satisfies the boundary conditions of hinge support, which are 

given on the sides 0x , ax   of the plate. 

We present the load function ),( yxf  in a form of a analogous trigonometric series 
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Substituting formulas (4) and (5) into the basic differential equation (3), we obtain  
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The ordinary differential equation (7) allows us to determine an unknown function nY  for any 

number n  of expansion. Its general solution can be written as 

 

)()( yyshyDychyCyshBychAyY nnnnnnnnnn   ,                                 (8) 

 

where nnnn DCBA ,,,  is arbitrary integration constants, and n  is a partial integral depending on the 

type nf  and, therefore, on a given external load f . 

To determine the four integration constants nnnn DCBA ,,, , the boundary conditions defined at 

the edges of the plate 0y , by   are used, and this boundary conditions, of course, can be 

different. In the general case, this leads to the solving a system of algebraic equations with respect 

to unknowns nnnn DCBA ,,, .  

After finding the coefficients nnnn DCBA ,,,  and determining the function )(yYn  by the 

formula (8), the plate deflections can be found by the formula (4) in the form of a series, so bending 

moments, torque, as well as, transverse forces will be written as 
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3. The case of uniformly distributed load 

Consider the case of a uniformly distributed load of the constant intensity constqf  . 

Using the formula (5), (6) we obtain 
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Then, taking into account (10), the partial integral of equation (7) can be written as 
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It can be seen from (11) that for even n, the homogeneous differential equation (7) has only 

trivial solution, so in the case of a uniformly distributed load of constant intensity the deflection 

function ),( yxW  takes the form 
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where the coefficients nnnn DCBA ,,,  depend on the given boundary conditions of the plate edges 

0y  and by  . 

4. Particular cases 

As is known, the mathematical model of the plate is completely determined by the deflection 

function W , and, as shown above, to find the deflection function, it is only necessary to determine 

the four integration constants nnnn DCBA ,,, , which are found from the boundary conditions. This 

conditions are given at the edges of the plate 0y  and by  . 

Obviously, various approximate methods can be used to find constants nnnn DCBA ,,, . It 

depends on what degree of accuracy is required in solving a particular practical problem. In 

addition, it should be borne in mind that the deflection function is defined as an infinite series, 

finding the sum of which is not always a simple problem. Therefore, it is often necessary to limit 

ourselves to the finite number of the first members of the series (4) for the deflection function, it 

also reduces the accuracy of the desired solution. 

At the same time, finding analytic expressions for the constants nnnn DCBA ,,,  allows us to 

obtain an analytical expression (formula) for the function of the deflections. And then the function 

of deflections can be set with the accuracy, which is necessary to solve a particular problem, only 

limiting the required number of members of the series (4). 

We consider finding the integration constants nnnn DCBA ,,, under various boundary 

conditions on the edges of the plate 0y  and by   in some particular cases. We show how the 

coefficients nnnn DCBA ,,,  are calculated before analytical expressions are obtained for them. 

If we assume that the edges of the plate ( 0y  and by  ), parallel to the axis x , have a hinge 

support, then we come to the previously considered Navier solution. 

In the case when one of the sides of the plate parallel to the axis x  is rigidly pinched and the 

other side is free, with a uniformly distributed load of constant intensity qf  , the integration 

constants are presented in [7]. 

Consider this particular case in a more general form, namely, for any kind of external load f . 

We assume that the side 0y  is free, and the side by   is rigidly pinched, then the boundary 

conditions are written as 
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From the boundary conditions (13), (14) and taking into account (4) and (8) we obtain a system 
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of algebraic equations for determining the coefficients nnnn DCBA ,,,  
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From the resulting system of equations we find analytical expressions for the coefficients 

nnnn DCBA ,,,  
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Now we consider the case when one of the sides of the plate (for example, a side 0y ) parallel 

to the x axis is supported by an elastic contour, and the other side is rigidly pinched. The elastic 

contour may be, for example, a beam, bending under the action of pressures applied to it. The 

boundary conditions on the side 0y  have the form 

0

0

2

2

2

2



















y
x

W

y

W
 ,    

0

4

4

0

2

3

3

3

2


































yy
x

W
EJ

yx

W

y

W
D  , 

where EJ  is the rigidity of the beam. 

Analytical expressions for the coefficients nnnn DCBA ,,,  are obtained in the same way and 

have the form 
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Due to the bulkiness of formulas for the determination of the coefficients nnnn DCBA ,,,  in 

the general case, and, consequently, due to the inconvenience and complexity of further use of these 

formulas, it is recommended that all calculations of the constants nnnn DCBA ,,,  be carried out for 

particular numerical values of a problem in each particular case with given numerical parameters. 
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Substitution of the found coefficients nnnn DCBA ,,,  in (8), (4) and (9) gives the function of 

plate deflections ),( yxW , bending moments and torques, as well as transverse forces in the form of 

trigonometric series in the each particular case considered above. 

In the case of a uniformly distributed load of constant intensity q , the deflection function 

),( yxW  has the form (12) with coefficients (15) or (16). 

Conclusion 

Without any difficulty, Levy solution can also be applied to the study for the bending of a plate 

whose the sides parallel to the axis x  have another boundary conditions. Levy solution also extends 

easily to those cases where the sides of the plate contour, parallel to the axis x , are not quite rigid, 

but are relatively flexible beams, that bend under the action of the pressures acting on them. 

In principle, Levy solution is more accurate than Navier solution, since in it the desired 

function ),( yxW  is approximated by trigonometric functions only in one direction, and in the other 

direction it is sought precisely from the differential equation (7). 

It should be noted that when calculating the plates by analytical methods in the most general 

formulation: with arbitrary boundary conditions (including elastic), different types of load, complex 

shapes of plates, with cuts, projections, etc., we have to face with great mathematical difficulties, 

and in most cases to obtain an analytical solution is not possible. Such a problem can be solved by 

applying a very efficient finite element method, which is a numerical approximate method for 

plates, but which gives a sufficiently high accuracy of solutions. 
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