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The model of the motion of a gas-liquid medium with small-size bubbles in a gravity field following 
free and forced convection was proposed. The model automatically takes into account the processes 

causing free convection in gravity field in the presence of heterogeneous concentration of bubbles. 

Compared to the model of interpenetration continuums to describe a two-phase medium, this model 
does not contain small parameters for derivatives. The two-phase flow in context of the problems 

similar to the water ozonation problem in contact tanks is considered. The analogy to compressible gas 

models allows obtaining the solution using well-established numerical solution schemes. 
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Introduction 

The movement of gas-liquid mixtures is wide-spread in nature and various technological 

processes. The diversity of these phenomena is determined by the proceeding physicochemical 

reactions, external conditions, the object dimensions, the magnitude of gas phase bubbles, etc. One 

of the actual technological processes of increasing interest is the disinfection of water in water-

supply systems through its ozonation [1-4]. This is due to the high activity of ozone, which allows 

you effectively affect many types of pollution, both natural and artificial origin. The other purifying 

methods, for example, electropulse water machining [5], are also of some interest. 

The complex motion of multiphase media stimulates the development of methods for sensor 

monitoring of the gas-liquid mixture behavior [6]. From the great number of the works devoted to 

the experimental study of ascending gas-liquid flows, we should take note of the following [7–9]. 

The works devoted to the numerical simulation of two-phase bubble motion are very numerous and 

are mainly held by the Euler continual approach of representing polydisperse flows [10–13]. The 

authors in their works [12–13] suggest the promising method for computing the bubble velocities 

by solving transport equations. Equations of water-air mixtures in context of various problems are 

periodically considered in the scientific literature. However, the mixture flow in gravity field, taking 

into account combined action of free and forced convection, has not been practically studied. 

Thus, the urgency of the development of the gas-liquid mixture models is undeniable. The 

purpose of this work is to develop a physico-mathematical model of a two-phase flow of water with 

small-size bubbles in context of the problems similar to the problem of water ozonation in contact 

tanks. 

1. Physical task description  

In this approach, the movement of bubbles in water is considered as the movement of small 

particles with a density much lower than the density of water. The physical basis of this convection 

is very simple. By means of the Archimedes buoyant force a lighter mixture containing a larger 

amount of gas floats in a heavier fluid in the same way as light warm air floats in a cold 

environment. The mathematical model for small-size bubbles is simpler than the equations of two-

phase fluid flow with arbitrary size bubbles and allows us to significantly simplify the problem.  

We will call air bubbles small if for their sizes the following conditions are satisfied: the 

constancy of the bubble shape; the equality of the temperature of the bubble to the ambient 
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temperature; the short bubble velocity setting time. Moving in water bubbles retain their spherical 

shape by virtue of the action of surface tension force, so that the movement of each bubble can be 

considered as the movement of a spherical particle. To satisfy this requirement bubbles, floating up 

in water under the action of Archimedes buoyant force, should have a size smaller than 
32 3 10  m [14]. The estimates [15] show that for air bubbles with a diameter less than 

32.5 10 m 

the relaxation time of the air and water temperature difference does not exceed 0.1 s. Since the time 

of small-size bubble staying in the water mass of a contact tank is assumed to be quite long, the 

temperature difference between bubbles and water can be neglected. The transient time of the 

velocity of bubbles floating up in water should be negligible compared with the characteristic time 

of their motion in the whole region. Since this requirement is essential for further simplifications, 

we will address this issue in more detail. 

Consider the equation of the gravitational small-size bubble floating-up in a liquid medium. 
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where SU , 0

S  – bubble velocity and the density of gaseous phase; U , 0

в  – the velocity and 

density of water, t  – time, m  – bubble mass, RC  – the resistance coefficient of moving bubble. In 

general, the RC  variable is: 
0

в

1

2
R D SC C S  U U , where DC  – resistance coefficient depending on 

the Reynolds number, S  – bubble mid-section area. 

Taking into account the added masses, the equation of particle motion is written as 
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where  
2 2( ) ( )s x xs y ysu u u u u u     . 
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From the second equation of the system, taking into account that   0R sf u u   and, rejecting 

the terms of the order 
*

0T


, we can obtain that 0 0yy   and therefore in this approximation 

   R s R x sxf u u f u u   . Rejecting in the first equation the summands of order 
*

0T


 and taking 

into account the remark about the value of the right-hand side, we obtain that in this approximation 

the term characterizing the resistance force takes the form. In the first equation rejecting the 

summands of the order 
*
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
 and taking into account the remark about the value of the equation right-

hand side, we obtain that in this approximation the term characterizing the resistance force takes the 

following form 
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Assuming that the air density 0 31.29 / ms kg  , the dynamic coefficient of viscosity for water 

310 / mkg s    and the diameter of bubbles 32 10Sd m   for the Stokes resistance law, we can 

obtain that 
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   . However, when evaluating it is necessary to take into 

account the added mass of water, which is several times the mass of air in a bubble. Hence instead 

of τ* = 3∙10-4 s, we obtain the value τ*= 1.2∙10-1 s. This time is two orders of magnitude shorter than 

the time 0T  (which is 10-30 s) of bubble floating-up in the 4 m high ozonator. Thus, the relaxation 

time of the velocity of bubbles with a diameter of 
3~ 2 10 m  is far less than the characteristic time 

of the process under consideration, so to simplify the solution we can apply the asymptotic 

expansion in the small parameter 
*
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In the agreed notation, the equation (1) is written in the following form 
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From this equation, the bubble velocity 
SU  can be expressed analytically and we can obtain an 

integral equation having the form 
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Integrating by parts and leaving only the first order terms on  , we will obtain  
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where index "0"  is for the initial values and the value  2   denotes second-order terms of 

smallness. 
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2. The mathematical modeling of a two-phase flow with small-size bubbles of 
gas mixture  

Note that in formula (4) the time derivative is taken along the bubble trajectory, that is 

.s
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dt t
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  

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Further, mindful that the relaxation time of bubble velocity   is small, in (4) we dismiss the 

terms of the second order in  . As follows from (4), after the relaxation time expires, the initial 

conditions can also be ignored. As a result of simple transformations over the remaining terms of 

the equation, we obtain 
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Being rewritten this equation assumes the form of  
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It can be easily discerned that from (6) for a given fluid velocity field all the projections of the 

vector  sU U  for the bubble velocity lag can be calculated by solving a system of algebraic 

equations.  

When deriving the equations of two-phase convection in water with small-size bubbles, for the 

sake of simplicity we assume that the two-phase convective flow is two-dimensional and laminar. 

The axis OY  is vertically guided in the direction opposite to the direction of gravity. In particular, 

in the case of the Stokes resistance law  24/ ReDC   for a two-dimensional flow in ,x y  plane 

with velocities ( , )u vU , ( , )s s su vU , approximately for small   to within the terms of the order 

2 , we get  
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where 
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  – the relaxation time; sd  – bubble diameter;   – liquid viscosity 

coefficient.  

Let us denote the bubble velocity vector as ( , )s s su vU  and the water velocity vector as 

( , )u vU . Let 0 0

в(1 / )l s s      denote the mass of liquid in a unit volume, s  – the mass of the 

bubbles in a unit volume, p  – pressure. Taking into account the conditions made, we write down 

the projections of the two-phase mixture motion equations on the x and y axes.  
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Introduce new variables ,s s s su u u v v v       and vector ( , )s su v  W . The system of 

equations (9) can be rewritten with the new variables  
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where L  – the length scale, V  – the velocity scale, V  – the scale of bubble velocity lag. 

 The equations (10) can be transformed to the non-dimensional form  
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From equations (11) it can be seen that in the region of large Reynolds numbers when the 

inequality (12) is satisfied  
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we can neglect the second terms as compared with the first ones in the left part of these 

equations, and solve the following system 
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Near the solid boundaries, due to the no-slip condition, the velocity of liquid along with inertial 

terms tends to zero. Meanwhile under the influence of Archimedes force bubbles continue to float 

up. Consequently, in the equations (11) near the solid walls, due to the presence of terms of the 

form s uW  and s vW , corrections to the inertial terms can become comparable. 

In these cases, when fluid moves, viscous force begins to play a defining role. Therefore, the 

value of the terms in equations (11) should be evaluated in comparison with the viscous terms. It is 

easy to see that in the region of small Re numbers, the terms dropped above will be small if the 

inequality (14) is satisfied. 
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With simultaneous satisfaction of the inequalities (12) and (14), equations (13) can be used in 

the entire flow region. Both inequalities coincide in form, if for the length scale in (14) we choose 

the distance L , on which the Reynolds number is equal to 1 near the solid boundary. However, the 
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sense of these inequalities is completely different and they are satisfied for the different scales. In 

the inequality (12), parameters V  and L  refer to the flow region with the large Reynolds numbers, 

and the inequality (14) includes the scales characterizing the flow region for the small Reynolds 

numbers. To close the system of equations (13), we should add the mass conservation equation for 

the two-phase mixture, the bubble mass conservation equation, the energy equation, and the 

equation of state. 

3. Equation of state of a two-phase mixture containing water and gas bubbles  
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Express from (15) the value 
0
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 and substitute it into the ideal gas equation of state 
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At the pressure up to 
810  Pa, the dependence of water density on pressure is described by the 

experimentally obtained linear law [15]  
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where ρ* and k is the medium parameters. 

Substituting (17) into (16) and defining a variable 
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 we obtain the mixture equation 

of state (18) 
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4. Energy equation for a two-phase mixture containing water and small-size 
bubbles  

Since the temperature of water and small-size bubbles can be considered equal, the amount of 

heat that is contained in the mixture with a constant volume is  

в (1 ) ,V VC T z C T z C T                                                                     (19) 

where вC  – heat capacity of water, VC  – heat capacity of gas at constant volume.  



 Engineering. Modeling of the Nonlinear Physical-Technical Processes.   135 

. 

From here it follows that the heat capacity of the mixture VC  is  

в (1 ) .V VC zC z C                                                                               (20) 

Similarly, for the heat capacity of the mixture at constant pressure, we can find that  
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Ratio of specific heat of this mixture is  

в

в

(1 )
.

(1 )

p p

V V

zC z CC
k

zC z CC

 
 

 
                                                                           (22) 

Thus, a two-phase mixture of water and small-size bubbles can be considered as a “gas” with 

the heat capacities (20), (21), ratio of specific heat (22), and the equation (18).  Let us calculate the 

entropy of this "gas". Firstly, it should be noted that the equation of state (18) resembles the Van der 

Waals equation of state, if in the latter we neglect molecular collisions.  

According to [16] the entropy of this gas written in the above terms is 
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in the adiabatic process remains constant. 

Therefore, from (23) setting 
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Hence, using the equation of state (18) and taking into consideration the equality P VC C R   

we find  

   

1

0 0

.

k

kT P

T P



 
  
 

                                                                                                               (24) 

We use equation (24) to evaluate the variation of the adiabatic temperature of a two-phase 

medium upon changing pressure.  Put the case that the mass fraction of bubbles z  in the contact 

tank does not exceed 10-4. Taking this estimate as a basis, we find that the mass fraction of water is 

 1 z  ~ 0.9999. Assuming that the heat capacity of water вC =4.180 
kJ

kg К
, we get k  = 1.000007. 

Substituting pressure ratio 
0

P

P
 = 2 into the formula (24), we find that with this pressure change, 

the temperature of the two-phase medium in the tank changes by 0.0005%. It follows as a logical 

consequence that the two-phase medium consisting of water and gas bubbles will have an almost 

constant temperature while moving in a tank. Also knowing that the temperature of the phases 

according to the above almost coincides, further it is possible to consider them identical and equal 

to a certain value 0T . This value, equal to the temperature of the incoming water, will be used 

instead of the energy equations of a two-phase mixture and bubbles. 
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Conclusion 

The mathematical model formulated above, unlike the model of interpenetrating continuums 

for a two-phase medium, does not contain small parameters for derivatives and is much simpler 

from the point of view of numerical solution. By virtue of the consideration of the medium 

compressibility and the dependence of the density on the concentration of bubbles, this model 

automatically takes into account the processes causing free convection in the gravity field in the 

presence of the heterogeneous concentration of bubbles. This kind of convection, when the supply 

of gas mixture is not uniform in space, significantly affects the duration of stay of the bubbles in the 

reactor and, consequently, the completeness of the reactions that occur. An additional advantage of 

the proposed mathematical model is its analogy with compressible gas models. Going forward this 

analogy makes it possible to use well-developed numerical schemes for solving equations of gas 

dynamics. 

Notwithstanding the fact that for simplicity the above conditions were presented on the 

example of two-dimensional equations for a two-phase mixture, they remain valid in the case of 

three-dimensional flows. 
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