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The paper considers the results of the research of the material based on boron nitride after 

mechanical activation and high pressure and high temperature sintering of hexagonal boron nitride. It is 

shown, that the structure and phase composition of the resulting material strongly depend on the 

technological route and the material synthesis conditions. The subsequent chemical purification of the BN 

powder after mechanical activation leads to a decrease in the content of the hexagonal boron nitride 

phase. High pressure in the sintering process promotes the formation of material based on cubic boron 

nitride with a crystallite size of about 50 nm. The additional modifying of boron nitride by aluminum in 

combination with the second mechanical activation decreases the sintering pressure from 7.7 to 5.5 GPa. 

At the same time, it leads to the cubic boron nitride grain growth due to the recrystallization process. 
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Introduction 

Synthesis of nanostructured ceramics based on dense modifications of boron nitride (BN) 

(wurtzite and cubic BN) is an important material science task, since the transition to the nanometer 

range of grain size for such materials implies an increase in their hardness and wear resistance and 

improves the performance of tools based on them [1]. Developed methods for producing of 

nanostructured super hard materials (SHM) based on cubic BN (cBN) by sintering of cBN 

nanopowders or by phase transformation of graphite-like (hexagonal) BN (hBN) or wurtzite BN 

(wBN) into cBN require an application of pressures over 8 GPa. That significantly limits the 

synthesis process of nanostructured STM based on cBN in practice [2].  

It is known that preliminary mechanical activation (MA) of graphite-like BN leads to a 

decrease in the temperature of cBN synthesis under conditions of high pressures and temperatures 

in comparison to the inactivated hBN [3]. On the other hand, the use of mechanically activated hBN 

powders is accompanied by an increase in the dispersion of the synthesized cBN phase due to an 

increase in the number of crystallization centers in BN during MA [4]. The aim of this work is to 

study of the synergistic effect of MA and high pressure and high temperature (HPHT) sintering of 

hBN on the structure of composite material on its base. 

1. Starting materials and research methods 

The hBN powder with the particle sizes within 5-100 μm is used as the initial material. 

Mechanical activation of the hBN powders is carried out in the planetary ball mill PBM AGO-2 

(Novic, Russia) in an argon atmosphere at a drum rotation speed of 1000 rpm for 10 min. Steel balls 

of 5 mm diameter were used to achieve the ball-to-powder ratio of 20:1. Before the HPHT 

treatment, the BN powders after MA are purified from hBN by etching in a NaOH melt at 340°C, 

with adding 10% aqueous HCl solution, and subsequent washing in distilled water and drying. The 

HPHT treatment of powder mixtures after МА is carried out in a HPA of the "anvil with a hollow" 

type in the pressure range of 2.5-7.7 GPa and in the temperature range of 1000-2000 
о
С.   
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The study of the powder after МА is carried out with a high-resolution scanning electron 

microscope (SEM) Mira equipped with an electron backscatter diffraction (EBSD) detector (Tescan 

Co, Czech Republic). The morphology of the surface fracture of the obtained samples is studied 

with the atomic force microscope (AFM) NT-206 (MicroTestMachines Co, Belarus) in contact 

mode. Crystallographic studies of the samples are carried out with the EBSD method. X-ray powder 

researches are performed with a Bruker D8 ADVANCE diffractometer (Germany) in Cu-K 

radiation. The study of specific surface is carried out with the BEТ methodusing analyzer SA 3100 

(Beckman Coulter, USA). The Vickers microhardness of the samples is measured using a Buehler 

Micromet-II microhardness testing machine (Switzerland) at a load of 200 g. 

2. Experimental part. Discussion of the results 

2.1. Mechanical activation of the hBN powder 

It is shown in [5] that during processing of hBN powder in the attritor the BN substructure 

transforms from crystalline to nanocrystalline and amorphous occurs. During MA of hBN for 4 

hours, the BN powder with sizes of 30–300 nm is synthesized, however the long MA duration 

results in the contamination of the BN powder [6]. Mechanical activation of the hBN powders in 

PBM leads to a partial decomposition of hBN and a decrease in boron and nitrogen content in it, 

and with increasing processing time the B2O3 content increases due to the oxidation of released 

boron. MA of the hBN powders in PBM promotes the formation of round-shaped agglomerates 

with a size in the range of 0.5–2 μm, consisting mainly of separate particles with a size in the range 

from 50 to 200 nm (Fig. 1). According to X-ray analysis data, the main phase of the powder after 

MA in PBM is hBN [7]. 

 

  

a b 

Fig.1. SEM images of the hBN powder after MA in the PBM: x 20 000(a); x 80 000 (b) 

 

X-ray diffraction analysis of the hBN powder after MA in PBM for 10 min shows the 

formation of high-pressure phases wBN and cBN (Fig. 2).  A further increase in the MA duration 

does not lead to an increase in the intensity of reflexes of cBN. On the contrary, an increase in the 

intensity and MA time leads to the reverse process of the hBN formation [6, 8]. The subsequent 

chemical purification of the mechanically activated BN powders results in a decrease in the mass of 

powders to 5-20 wt. %. 

Chemical purification allows to affect different phases of BN selectively: the hexagonal phase 

is less resistant to the aggressive action of NaOH and HCl under high temperature, therefore it is 

more strongly etched compared to cBN, and it is manifested in a sharp decrease in the intensity of 
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the (002) hBN reflex on the X-ray pattern. At the same time, after chemical purification the 

intensity of the (111) cBN reflex practically does not decrease as compared to the powder before 

chemical purification. The specific surface of the powder after chemical purification increases up to 

values of 100-120 m
2
/g [9].  

  

Fig. 2.X-ray diffraction patterns of the hBN powder after MA 

 

2.2. HPHT sintering at the pressure of 2.5 GPa of the BN powder after MA and 
chemical purification 

Sintering of the BN powder after MA at the pressures of 2.5 GPa in the temperature range of 

1000-1300°C leads to the formation of compact material based on plate polyhedral crystallites of 

BN with a size of ~ 0.1-0.5 µm (Fig. 3 a). 

 

  
a       b 

Fig.3. Structure of the compact material based on boron nitride after MA,  

chemical purification and sintering under pressure of 2.5 GPa and temperature of 1300°C:  

AFM image of the surface (a); X-ray diffraction pattern (b) 

 

X-ray analysis of the material after the HPHT treatment shows the presence of the hBN, wBN 

and cBN phases, as well as the compound B3N3Cl6 which is formed in the material as a result of 

interaction between BN phases and HCl (Fig. 3 b). An assessment of crystallite sizes (coherent 
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scattering regions, CSR) of the formed phases shows that CSR is 50 nm for the hBN and cBN 

phase, and 40 nm for B3N3Cl6 phase.  

 

  
a b 

  
c d 

Fig.4. Crystallographic studies of the sintered samples based on hBN after MA, chemical purification and 

sintering at 2.5 GPa: orthorhombic BN phase (a); hexagonal BN phases (b, c); tetragonal BN phase (d) 

 
Table 1. The parameters of the crystal structure of synthesized BN phases. 

a b c d 

Space group: 69 Space group: 164 Space group: 186 Space group: 134 

Laue group: 3.0mm Laue group: 7.3m Laue group: 9.6/mmm Laue group: 5.4/mmm 

Ortorhombic syngony Hexagonal syngony Hexagonal syngony Tetragonal syngony 

Unit cell length, Å Unit cell length, Å Unit cell length, Å Unit cell length, Å 

a 

2.50 

b 

4.34 

c 

3.35 

a 

2.51 

b 

2.51 

c 

6.69 

a 

2.52 

b 

2.52 

c 

6.70 

a 

8.63 

b 

8.63 

c 

5.13 

Unit cell angles, 

grad 

Unit cell angles, 

grad 

Unit cell angles, 

grad 

Unit cell angles, 

grad 

90о 90о 90о 90о 90о 120о 90о 90о 120о 90о 90о 90о 

Composition, 

atom % 

Composition, 

atom % 

Composition, 

atom % 

Composition, 

atom % 

B 50 N 50 B 50 N 50 B 50 N 50 B 96.5 N 3.5 
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The analysis of the sintered material by the EBSD method shows, that along with the BN 

phases indicated above, there are the BN phases of the orthorhombic, hexagonal and tetragonal 

syngonias (Fig. 4, table 1). An increase in the temperature of the HPHT treatment above 1500
o
C at 

pressure of 2.5 GPa leads to the formation of the hBN phase. The Vickers microhardness of the 

obtained material is 7–10 GPa. 

2.3. HPHT sintering of the BN powder after mechanical activation at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
pressure of 7.7 GPa 

According to X-ray analysis data, increasing the sintering pressure of mechanically activated 

BN powders up to 7.7 GPa and temperature up to 2000°C allows forming the material mainly based 

on the cBN phase. According to the AFM data, the obtained composite material has a grain 

microstructure with the grains of predominantly equilibrium shape and 0.4-0.6 μm in size (Fig. 5 a). 

Larger grains more than 1μm, formed as a result of the high-temperature recrystallization (Fig. 5b) 

are also found. 

  

  a      b 

Fig.5. The structure of the cBN-based nanostructured material obtained from hBN after MA and HPHT at 

the pressure of 7.7 GPa: a general view [9] (a); recrystallized cBN grains (b) 

 

2.4. HPHT sintering of the mechanically activated Al-modified BN powder 

The use of additives activating the sintering of the cBN powder is of practical interest, because 

it leads to a decrease in the parameters (first of all, pressure) of the material sintering as compared 

to the sintering process without additives, and it is especially important in the case of the 

submicron- and nanopowders of cBN. Aluminum is often used as an activating additive for 

sintering the cBN powders under HPHT [10]. In addition, Al has catalytic properties and stimulates 

the phase transformation of hBN to cBN. 

It is known [11] that the synthesis of сBN powders depends on the kinetics of dissolution of 

hBNin metal melts, i.e. on the degree of activity of its crystallite latter. For example, in [12] it is 

shown that electron beam processing of hBN+5% Al powder accelerates the phase transition of 

hBN into cBN and provides maximum values of compressive strength, microhardness and density 

of the cBN compacts. The activation of hBN+Al system is also possible with the "pumping" of 

mechanical energy into them. To improve the interaction between the hBN and Al during both MA 

and HPHT processes, it is suggested [13] to modify with Al mechanically activated hBN powder by 

the chemical-thermal method, and to apply the second MA again after modifying. 

The chemical-thermal modifying of BN powder by Al after MAis high temperature processing 

at 900°C in adeoxidizing atmosphere in the presence of aluminum-containing compounds, was 

carried out at 900°C during 2 hours. After MA the chemical purification of BN powder was also 
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performed as described earlier. After the chemical purification, modifying and re-activation in the 

PBM the BN powder is dense aggregates based on round and polyhedral particles with a size of 50-

100 nm (Fig. 6). The specific surface area of the powder measured by the BET method is 103.2 m
2
/ 

g, that is within the range for the chemically purified BN powder after one-time MA [7, 9]. 

HPHT sintering of the mechanically activated Al-modified BN powder was performed at the 

pressure of 5.5 GPa and temperatures of 1650-2000 
o
C. As a result, it has been found that a material 

on the basis of polyhedral cBN grains larger than 1 μm are formed. In the material it can also be 

observed the cBN grains up to 5 µm in size, which are formed as a result of collective 

recrystallization. The structure of the material is characterized by the presence of nanopores, there 

are separate micropores with a size of 1-3µm (Fig. 7). Some of cBN particles after recrystallization 

represent discs with the diameter of 3-5 µm and the thickness up to 1 µm. 

 

 

 

 

Fig. 6. SEM image of the morphology of the BN 

powder after MA, chemical-thermal modifying by 

Al and repeated MA in the PBM 

 

 Fig. 7. Fracture of the polycrystalline material on 

the basis of cBN sintered at the pressure of 5.5 

GPa and the temperature of 2000 oC 

 

Along with cBN, in accordance with X-ray diffraction analysis in the sintered material there 

are the hBN phase, aluminum oxides Al2O3, AlO, aluminum oxynitride Al9O3N7, aluminum boride 

AlB2, and boron oxide B2O3 as well. The formation of oxides during the sintering can be explained 

by the oxygen adsorbed on the BN surface in the form of oxygen-containing compounds after 

chemical purification and washing the powder in water, as well as the diffusion of container 

material CaCO3 from the container into the sintering region. The Vickers microhardness of the 

material sintered at the pressure of 5.5 GPa and the temperature of 2000 
o
C is 20 GPa. It can be 

concluded that both modifying by Al and the repeated MA activates cBN formation and its 

sintering, but at the same time there is the cBN recrystallization. In order to eliminate the cBN grain 

growth and preserve the nanostructured cBN it is necessary to increase the pressure while reducing 

the sintering temperature. 

Conclusion 

The synergistic effects of MA, chemical purification, chemical-thermal modifying by Al and 

HPHT sintering on the structure and phase composition of BN-based material were studied. The BN 

powder after chemical purification, modifying by Al and re-activation represent the dense 

aggregates based on nanoparticles with a size of 50-100 nm. The specific surface of the BN powder 

in this case is equal to 103.2 m
2
/g. 
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In the material obtained at the pressure of 2.5 GPa and at the temperature range of 1000-

1300°C there are the BN phases of orthorhombic and tetragonal crystallographic systems along with 

the hBN, wBN and cBN phases. Increasing the pressure of the HPHT sintering of the mechanically 

activated BN powders up to 7.7 GPa and the temperature up to 2000 °C allows to obtain the 

material mainly on the basis of the cBN phase with cBN crystallite size of about 50 nm. The 

chemical-thermal modifying by Al in combination with repeated MA makes it possible to activate 

HPHT sintering of BN powders at lower pressure of 5.5 GPa. In this case the size of the cBN grains 

increases up to 5 µm due to recrystallization of cBN. 
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