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The article reviews the existing methods for determining the surface energy of solids. Each of 

the methods described is practically limited to either temperature or values that are experimentally 

determined with low accuracy. A method is proposed for determining the surface energy of a solid on 

the basis of the dimensional dependence of its physical properties (magnetic permeability, 

luminescence intensity, thermal conductivity, etc.). The surface energy of alkaline halides is 

determined. Its magnitude is much larger than the surface energy of pure metals. The critical radius of 

these compounds is calculated, starting with which the direct Hall-Petch effect is reversed. 
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Introduction  

Methods for determining the surface energy of solids began to be developed in the 20s of the 

last century [1, 2]. In the sixties of the last century, some results of research were presented [3, 4]. 

The following methods for determining the surface energy of solids were proposed [3, 4]: 

1. The method of "zero creep". 

2. Method of destruction (splitting) of crystals. 

3. The "neutral drop" method. 

4. Method of dissolving the powder 

5. The method of stages of growth and evaporation. 

6. The method of a conical sample. 

7. Method of "healing scratch". 

The idea of the "zero creep" method is as follows. At a high temperature under the influence 

of surface tension forces, the arbitrary shape of a solid body must be transformed in the direction of 

decreasing the total surface energy. Thus, in particular, a freely suspended sample of a thin wire or 

foil should be shortened in length. On the other hand, under the influence of externally applied force 

(F), the foil (or filament) can be elongated due to the viscous flow. Obviously, for a certain value of 

F = F *, the surface tension forces will be compensated and the creep rate will vanish. An 

experimentally determined F * can be a source of information on the magnitude of the surface 

tension. This method was used to determine the surface energy of pure metals at a temperature close 

to the melting point, when the mobility of the atoms becomes noticeable. For other materials, this 

method does not apply. 

The most reliable version of the method of determination, based on cleavage of the crystal, 

was proposed in 1930 Obreimov [2]. The idea of this work is as follows. From the crystal along the 

cleavage plane, plastic is split off, which under the influence of the moment of forces acting against 

the forces of surface tension, partially bends. This plate can be used as a dynamometer measuring 

the splitting force. The method was applied in [3] (Gilman J.) for various crystals at a temperature 

of liquid nitrogen, when the heat arising from the splitting of the crystals can be neglected. The 

method is suitable for crystals having a cleavage plane. 

The value of σs can be determined from the data on the equilibrium form of the liquid droplet 

of another substance (B), which is located on the surface of the solid (A) under study. The 

measurement scheme is clear from Fig. 1. 
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Fig.1. Diagram of the "neutral drop" 

 

In the method for dissolving the powder, the value is found from the calorimetric 

determination of the dissolution heat difference of the dispersed powder and a massive crystal of the 

same mass (σs = qr-q0/S). The source of the significant error in the method described is the 

inaccuracy in the determination of the total surface of the powders. The generally accepted 

assumptions that the shape of the powder are spherical and all the powders are the same can lead to 

large errors. 

To determine the amount of surface energy in the method of growth and evaporation stages, 

one uses the fact that on the growth surface there are often observed retarded "resting" steps whose 

curvature is such that the equilibrium vapor pressure near the step surface coincides with the vapor 

pressure in the space surrounding the crystal. The accuracy of the method is small. 

Directly in the method of a conical sample, not the surface energy but the quantity (interfacial 

surface tension at the liquid-solid interface) is determined at the melting temperature [4]. The 

method is rarely used.  It is known that in the case of high-temperature annealing of a crystal under 

equilibrium conditions, on the surface of which a scratch is applied, the latter is smoothed out. For 

metals, the kinetics of smoothing is determined by the mechanism of surface diffusion. This is the 

basis of the method of "healing scratch" [4]. 

As follows from the review [1-4] of experimental methods for determining the surface energy 

of solids, each of the methods described is practically limited to either temperature or values that 

are experimentally determined with low accuracy. 

At present, various modifications of the "neutral drop" method have become most 

widespread. This method is based on Young's equation [5], which leads to the concept of the 

contact angle θ (Fig. 1). There are two models for describing the contact angle on a real surface. 

The Wenzel model and the Cassie-Baxter model. Unlike an ideal surface, a real surface can have a 

chemical heterogeneity and surface roughness. The Wenzel model considers a rough surface, but 

with chemical homogeneity [6]. The Cassie-Baxter model considers a plane surface, but with a 

chemical inhomogeneity [7]. These models have been widely used to the present time. However, 

today they have been seriously criticized [8]. More complex models of the contact angle have been 

developed [9-13].  

In [13], the Young equation, the Wenzel equation, and the Cassie-Baxter equation were 

obtained from the thermodynamic point of view. From the conclusions, the behavior of the contact 

angle could be determined. In an ideal situation, the contact angle is determined by an 

infinitesimally small region near the contact line, and not by the inner surface inside the contact 

line. The angle of contact also does not depend on external factors that do not affect the surface 

energy. Thus, it is not influenced by pressure, droplet size, gravity, curvature of the substrate 

surface, rotation of the substrate and the presence of needles or defects. From the point of view of 

the hysteresis of the contact angle, it was explained why these equations are not correct for 

describing real common surfaces, although the Cassie-Baxter equation is widely used for a 

superhydrophobic surface. In addition, the limitations of the equations were discussed. It is 
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expected that this study will provide a deeper understanding of the correctness of the models of 

contact angles and the nature of the contact angle. 

1. Experimental method 

The foundations of the thermodynamics of curvilinear interfaces were laid by J. Gibbs [14]. 

Then R. Tolman and his followers reduced this problem to the account of the dimensional 

dependence of the surface tension. In 1949, R. Tolman derived the equation for the surface tension 

σ [15] 

1

s )R/21(/ 

  ,                                                 (1) 

Here σ∞ is the surface tension for a plane surface; Rs is the radius of the tension surface; δ> 0 

is the distance between an equimolecular separating surface and a tension surface for a plane 

boundary. The order of magnitude of the parameter δ, called the Tolman length or the Tolman 

constant, should be comparable to the effective molecular diameter a. For R >> δ Tolman's formula 

can be rewritten in the form: 

R/21/   ,                                                                     (2) 

Subsequent studies did not change the content and form of the equation (2). 

On the basis of quantum statistical thermodynamics we obtained the response function of the 

system W to the external action in the form [16]: 

R/d1W/W                                                                       (3) 

The parameter d is related to the surface tension σ by the formula: 

RT

2
d


                                                                      (4) 

Here σ is the surface tension of a massive sample; υ is the volume of one mole; R is the gas 

constant; T-temperature. 

Equations (3) and (4) were used by us to develop a method for determining the surface tension 

of solids [17]. The method was used to determine the surface tension of dielectric crystals KCl, with 

an admixture of thallium ions as a luminescent probe (W=I). The intensity of X-ray luminescence I 

was determined by the standard photoelectric method. The grain size of the dielectric was 

determined using a metallographic microscope. The results are shown in Fig. 2.  

           

a                                                                                     b       

Fig. 2. Dependence of the intensity of X-ray luminescence KCl (а) on the size of the phosphor grain (b):  
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In the coordinates r1~I , the experimental curve is rectified in accordance with (3), giving a 

value of d = 0.02 μm. For KCl υ= 74.6 cm
3
/mol and from (4) for surface tension, we obtained: 

σ=0.730 J/m
2
. 

Note that as a function of the W response in equation (3), most physical properties that depend 

on the particle size or the film thickness (magnetic susceptibility, dielectric constant, thermal 

conductivity, etc. (can be used and determine the surface tension of a rigid body).  

 

2. Results of the experiment and their discussion 
 

The experimental results are shown in Fig. 3 and in Table 1. 

 

 

a                                                b                                                           c 

Fig.4. Surface tension of halogenide of alkali metals: a – Li, Na; b – R, Rb; c - Cs 

 

Table 1. Surface tension and constant Tolman of alkali metal halides 

 

Metal Тm, К σm, J/m
2 

d, nm υ, g/mol δ, nm 

 

LiCl 878 0.615 20.9 42.4 10.5 

LiBr 825 0.578 40.1 86.8 20.1 

LiI 742 0.519 55.5 133.6 27.8 

NaCl 1074 0.752 35.1 58.4 17.6 

NaBr 1020 0.714 58.8 102.9 29.4 

NaI 934 0.654 78.4 149.9 39.2 

KCl 1043 0.730 43.6 74.6 21.8 

KBr 1007 0.705 67.1 119.0 33.6 

KI 954 0.668 88.7 166.0 44.4 

RbCl 991 0.694 67.1 120.9 33.6 

RbBr 954 0.668 88.4 165.4 44.2 

RbI 920 0.644 109.4 212.4 54.7 

CsCl 918 0.643 86.6 168.4 43.3 

CsBr 909 0.636 108.3 212.8 54.2 

CsI 894 0.626 130.1 259.8 65.1 
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For h <d, formula (3) loses its physical meaning (A (h) → ∞), so we extend the function A (h) 

in this region so that the function A (h) vanishes at the point h = 0. This condition is satisfied when 

the function (3) is rewritten as: 













hd
-1

d
A)r(A 0

                                                                     (5) 

 

The parameter d is naturally interpreted as the thickness of the surface layer (Fig. 4) 

 

 
 

Fig.4. Schematic representation of the surface layer 

 

Let us compare the parameter d for alkali metal halides with pure metals (Table 2). 

 

Table 2. Parameter d of pure metals (M) 

 

М d, nm М d, nm М d, nm М d, nm М d, nm М d, nm 

Li 1.4 Sr 8.3 Sn 2.0 Cd 1.9 Fe 3.1 Gd 7.6 

Na 2.1 Ba 8.9 Pb 2.6 Hg 0.8 Co 2.8 Tb 7.5 

K 3.7 Al 2.2 Se 1.9 Cr 3.8 Ni 2.7 Dy 7.6 

Rb 4.2 Ga 0.9 Te 3.5 Mo 6.5 Ce 5.4 Ho 7.8 

Cs 5.2 In 1.6 Cu 2.3 W 8.4 Pr 6.0 Er 7.8 

Be 1.8 Tl 2.4 Ag 3.1 Mn 2.8 Nd 6.4 Tm 7.4 

Mg 3.1 Si 4.9 Au 3.3 Tc 5.1 Sm 6.3 Yb 6.5 

Ca 7.0 Ge 4.0 Zn 1.5 Re 7.1 Eu 8.3 Lu 8.2 

 

From Table 2 it is seen that the thickness of the surface layer of pure metals does not exceed 

10 nm. This means that the surface layer of pure metal is a nanostructure.  For halides of alkali 

metals, the thickness of the surface layer varies from 80 to 250 nm. This means that dimensional 

effects are observed even at R ~ 10d ~ 2000 nm. It should be noted that the Tolman constant δ = d/2 

has no physical meaning as the thickness of the monomolecular layer. 
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Experimental studies of the mechanical properties of nanomaterials and nanostructured 

coatings have shown that the tensile strength and hardness of many metals (Pd, Cu, Ag, Ni, etc.) are 

significantly higher than in the corresponding massive analogues. The increase in hardness and 

strength with decreasing grain size to a certain critical size is practically characteristic for all 

crystals. This follows from the well-known Hall-Petch equation that the yield stress σT depends 

inversely on the average grain size d [18, 19]: 

,kd 2/1

MT

                                                                      (6) 

where σM is the ultimate strength of a single crystal, k is a certain dimensional coefficient. 

Typically, the Hall-Petch relation (5) is satisfied for a significant part of the nanomaterials 

studied only up to a certain grain size, and at its lower values, reverse effects are observed: hardness 

(strength) decreases as the grain size decreases. 

Despite the large number of works on the study of the influence of the size factor on the 

mechanical properties of nanostructures, the physical mechanisms of this influence remain the 

subject of ongoing discussions [20-25]. In [26] for the yield point we obtained the equation: 

.dC 2/1

MT

                                                                      (7) 

Equation (7) coincides in form with the Hall-Petch equation (6). However, the proportionality 

coefficients in these formulas differ. In the case of equation (7), the behavior of the yield stress of 

small particles is also determined by the value of their surface tension σ. 

For small d, A.I. Rusanov obtained an asymptotic linear dependence [27]: 

.Kd                                                                      (8) 

Here K is the coefficient of proportionality. Formula (8) was obtained on the basis of 

thermodynamic considerations and should be applicable to small objects of a different nature. In 

this case, equation (7) takes the form: 

.CKd 2/1

MT                                                                       (9) 

Equation (9) is the inverse Hall-Petch effect. It follows from equation (7) that the Hall-Petch 

equation begins to break from the moment when the dimensional dependence of the surface tension 

(R<d) begins to appear. 

From Table 1 it can be seen that the strength of alkali metal halides is replaced by ductility at 

rather large d values. This affects many properties of these crystals. 

Conclusion 

The proposed method for determining the surface energy of a solid body with respect to the 

dimensional dependence of its physical property allows one to make a comparison with several 

methods. The implementation of each method does not cause any difficulties. This is illustrated by 

the calculation of the surface energy of alkali metal halides. 
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