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The slow rotation of a solid body in a liquid, which is affected by the resistance force, is 

considered on the example of an ellipsoid. This force is created by both friction forces and pressure 

forces resulting from the effect of the attached mass. A method of resistance calculation for an arbitrary 

ellipsoidal body is proposed. Analytical formulas for the resistance forces of an ellipsoid rotating in a 

viscous fluid are established. The results obtained are applicable for the calculation of multiphase 

flows in technical devices. 
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Introduction  

The movement of multiphase media in various technological processes is of great interest. 

These include the task of effluent treatment, sedimentation of dispersed mixtures, the deposition of 

combustion products emitted from the pipes of industrial enterprises and so on. In nature, we also 

often observe multiphase currents, in particular, the movement of dust and rain clouds, vortex 

tornadoes and many other things. Prediction of the evolution of such dispersed two-phase systems 

should be based on known calculation and experimental data on the strength of the interaction of a 

single particle of a given shape with a carrier medium taking into account all the properties of the 

medium and the laws of particle motion. 

The solution of the complete problem, taking into account the interaction of each particle with 

the carrier medium, is an insoluble problem due to a large number of moving particles. As a rule, 

they are limited by the phenomenological law of the hydrodynamic resistance of a single particle in 

a carrier medium. The assumption of spherical particle shape is the most common and quite 

acceptable. In cases, when the shape of the particle differs from the spherical shape, a certain 

effective radius of a conforming spherical particle is determined, which, when moving under the 

same conditions, will experience the same resistance of the medium as the original particle. 

This approach reasonably led to the fact that most of the efforts to determine the law of 

resistance were devoted to the study of spherical particles. In many cases, however, a moving 

particle can more accurately be described as an ellipsoid. And in this regard, studies devoted to the 

flow around ellipsoids, in particular, ellipsoids of rotation (spheroids) are of interest. In [1, 2], the 

results of analytical computation on the flow parallel to the main axis of spheroids at small 

Reynolds numbers are presented. In [3], the results of a numerical calculation of the flow around a 

uniform stationary stream of spheroids of various shapes with Re <100 in the axially symmetrical 

formulation are presented, and the values of the integral characteristics are given. In [4–7], the 

calculated data on the flow around spheroids at Reynolds numbers of about 100 are shown. The 

values of the drag coefficient depending on the degree of elongation are presented. 

The results of numerical and experimental studies make it possible to build correlation 

dependences used in determining the resistance forces during the motion of particles. Unfortunately, 

all expressions are approximate and have limits of applicability. From our point of view, attempts to 

clarify the law of hydrodynamic resistance of a moving body in various conditions will continue for 

a very long period of time. 
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The information on the law of resistance of an arbitrary ellipsoid, which makes it possible to 

more accurately describe the shape of a body moving in a viscous medium, remains relevant. In [8, 

9], the problem of slow stationary flow of a viscous flow around a triaxial ellipsoid is solved, a 

simple calculation formula for its resistance is indicated. In the case of unsteady flows (rotation of 

the body, acceleration of the flow), the body is affected by the resistance force created by both the 

friction forces and the pressure forces resulting from the effect of the added mass. Therefore, a more 

accurate description of the shape of the body becomes more important. 

In this paper, the authors consider the actual problem of determining the resistance force during 

the slow rotation of an ellipsoid in a viscous fluid based on the application of a tension-compression 

transformation. 

1. Determination of the flow fields of a rotating sphere and an ellipsoid. 

In exceptional cases, the system of equations of hydromechanics 
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and equations for finding the pressure field 
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here, equations (1) and (2) use the generally accepted notations for the operators of differentiation, 

velocity, pressure, and Strouhal, Euler, and Reynolds numbers. 

One of these cases is the case of slow rotation of a sphere in a viscous incompressible fluid, 

when due to sticking the sphere initiates movement in the surrounding unlimited medium, as a 

result of which a velocity field is established in the fluid [10] 
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satisfying the subsystem (1) and the boundary conditions on the sphere itself ( 1 ) 
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where 


 is the radius of the vector, 


is the angular velocity of rotation. 

In this case, the friction force resistance moment acts on the rotating sphere 


8Sd2)(M ,        

or in dimensional values [10] 


3R8)(M , (5) 

here  is the strain velocity tensor,  is the medium viscosity, R  is the sphere radius. 

As for equation (2), on the basis of which the pressure p  is found, and the general formula 

Sdp)p(M


 (6) 

for the moment of pressure forces, they can effectively be used for stationary flows. But rotational 

motions (or their superposition, which is allowed by the system (1)) are by their nature non-

stationary. Therefore, to take into account nonstationarity, it is assumed that the moment )p(M


can 

be calculated based on the integral theorem on the change of angular momentum 
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d 
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where dm is the element of mass, Sd


 is the element of the surface, on the assumption that the liquid 

mass rotates like a solid body. Then on the side of liquid the resistance moment will act on the 

solid. 





ggg J

t
JJ

dt

d
)p(M , 

where 
gJ  is the inertia tensor of the solidified body with a uniform density equal to the liquid 

density. In the case of a sphere, the vector product 


gJ  (it is the one that is obtained by using 

(6) and the Bernoulli integral for a steady flow) disappears by virtue of central symmetry. 

Thus, it can be concluded that when removing active moments supporting the rotation of the 

sphere near its center of mass, the further (damped) motion of the sphere will be determined by the 

equation 
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in which, along with the tensor 
g
J  of the hardened liquid sphere, there occurs inertia tensor 

b
J of 

the solid sphere or the hollow one itself. 

Equation (7) shows that with the active effects being removed, the previous rotation of a solid 

sphere at a velocity 
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 decreases exponentially 
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Consider the flow generated by a rotating solid ellipsoid 

1)
c

z
()

b

y
()

a

x
( 222

 (8) 

at an angular velocity 
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around some axis passing through its center ( k,j,i


fixed along the main central axes of the 

body inertia, and the directions of the semi-axes a , b , c  correspond to them). 

It is advisable in (8) to replace the ratio of dimensional quantities of ax  type with the 

relations of dimensionless quantities. This can be done by dividing the numerators and 

denominators by the same linear scale L  used in nondimensionalization of the Navier-Stokes 

equations. In this case, we obtain the canonical equation of the ellipsoid as follows 
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will translate the sphere of unit radius into a preset ellipsoid according to the law of simple tension-

and-compression deformation [9]. In this case, the velocity field (3) will also take place in case of a 
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rotating ellipsoid, and it satisfies in variables x , y , z , both equations (1) and boundary conditions 

(4), (5). Moreover, each term from (3), i.e. any velocity satisfies the above requirements,  
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that is why, the use of expression (9) is quite justifiable, since in fact,  it follows the principle of 

superposition of the simplest flows. But at the same time, the principle of superposition applies to 

pressure or the squared velocity in the form 
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 2. Calculation of the projections of the principal moment of resistance from 
friction forces 

First turning attention to calculation of the principal moment generated by friction forces, it is 

necessary to find the values of the components 
ij

of the strain velocity tensor. Since, based on (3), 

the values of the generalized rates at any point are represented by the equalities 
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then using them and the general formula, 
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it can be found that on the surface of the ellipsoid the components of the tensor take the values 
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Hereinafter, to abbreviate expressions, the following notations are used 

cos , cossin , sinsin ; 0 , 20 . 

In these notations, the radius-vector of the current point of the body surface is taken as 

321s kji


, 

so that for a directed element of the ellipsoid surface, the following is correct 
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After performing calculations recommended by the formula 
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Translation of the results (11) into the calculated dimensional form is carried out by 

multiplying them by the complex 

133 TLL
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then it turns into 
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that automatically, at Rcba , brings to the previously cited result (5) for a sphere. Formulas 

(12) are convenient because they can be applied to plates (round disks); for needle bodies they lead 

to a zero result. 

3. Calculation of the projections of the principal resistance moment from 
pressure forces 

Starting to determine the resistance moment created by pressure forces , one can first stop on 

the calculation of the part that arises from the interaction of rotations. In this regard, it is taken into 

account that 
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After performing the calculations, it is found that approximate dimensionless expressions take 

place for the projections of the moment 
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that after multiplying by the complex 
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take a dimensional form 
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From (13) it can be seen that the resistance moment from pressure forces while ignoring 

angular acceleration occurs only as a result of the interaction of rotational motions, that is, in those 

cases when the rotation axis does not coincide with any principal central inertia axes of the ellipsoid 

itself. Expressions (13) do not apply to any other bodies, as they are only drawn up for an ellipsoid. 
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In order to be applied to other bodies, it is necessary (13) to represent a more general form by 

introducing into consideration the inertia tensor of the ellipsoid 

22

22

22

ba00

0ca0

00cb

m
5

1
J , abc

3

4
m  . 

In this case (13) take the form 


J)p(M  

and this expression immediately informs that in the general case the resistance moment should be 

represented as 
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as stated by the integral theorem on the change in the moment of momentum 
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Now the formula (14) makes for obtaining information on the arising resistance moment from 

pressure forces for other bodies. To do this, it suffices in (14) to choose the inertia tensor J  

corresponding to the body chosen. For example, for a plate ( 0a ) you should use 
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 4. Determination of the damped motion of the bodies of some configurations 
in a viscous medium. 

The obtained information for the resistance moments in the form of (13), (14) makes for 

conclusion that after removing the active effects on maintaining rotation, the subsequent motion of 

a rigid body near its inertia center in a viscous medium can be described by the equations 

1) for a uniform ellipsoid: 
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The corresponding equations for the motion of a rigid body in vacuum are obtained from those 

presented for 0mg  and 0 . They conform with the classical ones [11]. 

For the sphere ( cba ), equations (15) turn into: 
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the solution is: 
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For the motion of an ellipsoid with axial symmetry ( cb ), equations (15) become 
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Using them the following are found 
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The resulting system of equations for a rotating circular disk 0a , cb  in a resisting 

medium is integrated in a similar way. 
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From it for rotation rates follow the basic and explaining formulas 
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The kinetic energy during the rotational motion of a solid body in accordance with the 

definition can be found by the formula 
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In the studied motion of the rotation ellipsoid ( cb ) by inertia in a resisting medium there 
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Figure 1 shows the dependencies of )t(2R  in case of different ratios. 
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The graphs are illustrative and only qualitatively show the rapid decay of the rotational motion. 

 

 

 

 
Fig.1. Reduction of the relative kinetic energy of rotation 
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To determine the rotation law of a solid body in a resisting medium, it is necessary to add the 

Euler kinematic relations to the equations obtained [11] 

1cossinsin  , 

2sincossin  , 

3cos  , 

in which , ,  indicate Euler angles, but this question becomes of interest only if there are 

active forces. 

Conclusion 

Thus, by the example of an ellipsoid, a slow rotation of a solid body in a liquid is considered, 

taking into account the fact that it is exerted by the resistance force created by both the friction 

forces and the pressure forces resulting from the effect of the added mass. 

Derived equations of rotation by inertia in a resisting medium near the geometric center for 

ellipsoid bodies can be applied to plates into which an ellipsoid can degenerate. The obtained 

expressions can be easily applied in the calculations of multiphase flows in technical devices and in 

the study of natural phenomena. 
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