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Using the additive technologies in the production of nanoparticle-fabricated three-dimensional materials 

has become one of the most promising ways of obtaining effective and low-cost thermoelectric energy converters. 

Nanostructuring provides a route to modifying selectively the transport properties which determine the materials 

thermoelectric efficiency. In this paper, we have shown one more effect which consists in a significant dependence 

of the contribution of lattice vibrations to the thermal conductivity coefficient of a nanoparticle (its reducing is 

required in practice) on its morphology for nanoparticles of a pure substance. The particle morphology has been 

specified by the values of its effective diameter, fractal dimension and surface roughness.Using nanoparticles of 

pure bismuth at low temperatures as an example, we have demonstrated a notable decrease in the lattice thermal 

conductivity in “complicating” the particle morphology. In the final section, we have presented methods of 

calculating characteristics of nanoparticle ensembles, the methodology of measuring the fractal dimension 

experimentally also being discussed. 
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Introduction 

Thermoelectric materials and energy converters on their basis have been an object of considerable 

interest among researchers in recent years [1]. The expanding field of their application includes energy 

generators which operate in extreme conditions (radioisotope thermoelectric generators for Voyager-2 and 

other space modules [1]), thermoelectric converters for utilizing the waste heat dispersed into environment 

[2], cooling and temperature-control facilities based on the Peltier effect, etc. [3]. Despite the intensive 

development of multiple approaches to obtain thermoelectric materials with promising properties based on 

low-dimension structures (nanofilms [4,5], quantum wires [6], etc.), highly-effective and low-cost 

thermoelectrics can be produced on the basis of 3D nanocrystalline structures [7,8]. The scheme which 

illustrates the performance of a typical thermoelectric converter is given in Fig. 1.  

 

 
 

Fig.1. Schematic illustration of the performance of a typical thermoelectric converter. A thermoelectric device creates a 

voltage when there is a different temperature on each size of a thermoelectric material sample. At the atomic scale, an 

applied temperature gradient causes charge carriers in the material to diffuse from the “hot” side to the “cold” side. 
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The key characteristic parameter determining the materials thermoelectric efficiency is the 

dimensionless figure of merit, ZT, which can be expressed as a function of thermal conductivity  , 

electrical conductivity   and Seebeck coefficient α: 2

ZT T    where T  is the average temperature 

between the “hot” and “cold” sides of a thermoelectric converter and car ph    [1,2,7]. Here, car and 

ph are the contributions of charge carriers (electrons, holes) and phonons (crystal lattice vibrations) to the 

thermal conductivity, respectively (several other contributions, e.g. the ones of excitons or spin-orbit 

coupling, are neglected, being much lower). In every single material, as a rule, electrical conductivity   and 

the contribution of carriers to the total thermal conductivity, car , cannot be varied separately, and optimal 

thermoelectric properties can be obtained primarily through the reduction of the phonon contribution ph . In 

nanostructured polycrystalline materials, ph  is generally decreased through the formation of multiple 

interfaces (grain boundaries) which scatter thermal phonons [9], add to this, the energy filtration of charge 

carriers at grain boundaries, which reduces the contribution of low-energy carriers to transport properties, 

results in an additional increase in the Seebeck coefficient [2]. Nanostructured polycrystalline thermoelectric 

materials can be produced using various technologies of up-to-date powder metallurgy, e.g. spark plasma 

sintering, selective laser sintering, selective laser melting, etc. [7,8].  

It is necessary to mention that several effects manifesting themselves at the nanoscale provide 

additional “knobs” which allow tuning the properties of thermoelectric materials. For example, the phase 

equilibria in small-volume particles of stratifying solutions become morphology-dependent, being different 

from the ones of macroscopic-sized structures, which leads to the possibility of the formation of stable 

phases, the compositions of which are highly unstable in macroscale particles at the operation temperatures. 

As we have previously shown in [10,11] using the combination of thermodynamic [12] and ab initio [13] 

approaches, such phases correspond to much lower values of the phonon thermal conductivity coefficients 

favoring the growth of the thermoelectric figure of merit; we have also predicted the set of optimal 

morphological characteristics (as well as some other factors) which lead to reaching the minimum value of 

ph  . These effects have been interpreted as the implementation of several mechanisms of lowering the free 

energy of a nanoscale system, which can also be competitive in several cases leading to specific non-

monotonous dependences of phase equilibria characteristics [14]. Despite the fact these effects are realized at 

the nanoscale particle sizes (available for the additive technologies, however) in the majority of cases, there 

is a broad class of systems with greater molecular masses in which such effects manifest themselves at 

characteristic sizes even several thousand times higher [15,16] (and should probably be called “small-

amounts-of-matter effects” instead of “size effects” [17]). 

In the present paper, we have shown for the first time another specific effect, which consists in 

additional decrease in the phonon contribution to the thermal conductivity coefficient, manifesting itself in 

nanoparticles even of pure substance. Physically, this effect is associated with an increase in the 

morphology-dependent fraction of surface atoms which have oscillation characteristics being different from 

the ones of atoms in the particle volume. The dependence of ph  on particle morphology has been 

constructed using nanoparticles of pure bismuth as an example. Bismuth (being either pure or alloyed with 

antimony) is considered to be one of the most efficient thermoelectric materials especially at low 

temperatures with a large set of possible application fields including space technologies. The obtained 

estimates combined with the ones in [10] show one more possible route to the more effective optimization of 

the thermoelectric performance of particle-fabricated nanoalloys. 

1. Lattice thermal conductivity of nanoscale particles: the morphology matters 

The specific properties of the substance in systems of a very small volume have been investigated by 

the scientific community since 1850: M. Faraday was the first to emit the idea that the melting temperature 

of extremely tiny particles should be smaller than the one for the bulk state [18]. A detailed review 

concerning unique properties of the substance at the nanoscale including the melting behavior can be found 

in Refs [18,19]. Here, in order to determine the morphology-dependent melting temperature of nanoparticles, 

we have used the model suggested by W.H. Qi and M.P. Wang [20]. Being experimentally verified for 

nanoparticles of pure bismuth, this model is based on the considerations of J.H. Rose etal. [21,22] on the 
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binding theory of solids which allow deriving the well-known empirical relation between melting 

temperature 
m

T and cohesive energy 
coh

E  for pure metals: 0.032
m coh B

T E k  where 
B

k  is the Boltzmann 

constant. According to the approach of W.H. Qi and M.P. Wang, the dependence of the nanoparticle melting 

temperature on the morphology can be described by the following equation:  1 6
nano bulk

m m at eff
T T kr d   where 

nano

m
T  and 

bulk

m
T  are the melting temperatures of a nanoparticle and the bulk material, respectively, 

at
r  is the 

atomic radius and k  and 
eff

d  are the shape coefficient and the effective diameter of a nanoparticle (the 

diameter of a spherical nanoparticle of the same volume). The shape coefficient is the ratio between the 

surface area of the particle under consideration, A , and the surface area of the sphere of the same volume, 

0
A : 

0
k A A (in details, such approach and its variants have been described in [12,23,24]). High values of 

shape coefficient k could be obtained, for example, in the case when the considered particles have the shapes 

similar to simple non-spherical geometric structures (for example, k=1.49 for a tetrahedron, k=1.52 for a 

cone, k=3.20 for a star icosahedron (an icosahedron with a tetrahedron at each face)) or structures extended 

in one direction (for example, values k>2.00 correspond to oblate spheroids with aspect ratio a/b>5 or to 

prolate spheroids with a/b>3). Moreover, high surface-to-volume ratios are also characteristic for particles of 

complicated and irregular shapes, in order to take into account their morphology, the notion of fractal 

geometry is often used [25]. According to the approach suggested by us in [26,27], the shape of a particle 

can be characterized by its fractal dimension D which correlates its volume V and surface area A:
2 D

A CV

where C is a numerical coefficient. For real irregular morphologies of materials structure elements, D<3 and 

is typically non-integer. The most classic examples of fractal structures are worm-like, amoeba-like, and 

porcupine-like ones [26] (see Fig. 2a). The formation of fractal-shaped structures is generic for many non-

equilibrium processes [28]. 

 

  
 

a 

 

b 

Fig 2. a) examples of “amoeba-like” and porcupine-like” fractal structures with various D; b) the dependence of relative 

Debye temperature 
nano bulk

D D
  on the fractal dimension for a nanoparticle with deff=40 nm. 

 

Melting temperature and temperature 
D

 , at which all the modes of oscillations in the considered solid 

medium become excited (known as the Debye temperature), are interrelated according to the Lindemann 

criterion of melting [29]. This criterion is based on the statement that the root-mean-square amplitude of 

thermal oscillations at this temperature reaches a certain critical value which represents a constant fraction of 

the characteristic interatomic distance, 
L

 , in the crystal lattice. 
L

 is the so-called ”Lindemann parameter”, 

 0.15, 0.30
L

  . The Lindemann criterion can be mathematically formulated as follows [29]: 

2 2 2 2
4 4

m L B D A
T A a k N h    where h  is the Planck constant, a  is the characteristic interatomic distance and A  

is the molar mass of the considered substance. Since the characteristic distances in the crystal lattice are 

independent on the size and shape of a particle when the particle size does not exceed several nanometers, 
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we obtain 
1 2

D m
T : ,  

1 2
1 6

nano bulk

D D at eff
kr d    while shape coefficient k  is expressed is a function of volume 

V , 3
6effV d , and fractal dimension D  of a nanoparticle:    

2 / 3
2 /

, 3 4
D

k V D V V  . The dependence of 

temperature 
D

  on the fractal dimension for a nanoparticle with deff=40 nm is plotted in Fig. 2b. 

In the general case, the contribution of phonons to the thermal conductivity coefficient (
ph

 ) is directly 

proportional to average phonon velocity 
ph

v  and phonon mean-free path 
ph

l [9]: 3
ph p ph ph

C v l   where 
p

C  is 

the specific heat of the material under consideration. Temperature 
D

  is related to the average phonon 

velocity according to the following equation [30,31]:   
1 3

2 3 4
D B A m ph

h k N V v  : . Here, 
m

V  is the molar 

volume of the considered material. The dependence of the molar volume on the nanoparticle morphology 

becomes significant only when the characteristic size of a nanoparticle is 5-10 times lower than the ones 

regarded in this paper [32], therefore, we obtain nano bulk nano bulk

D D ph ph
v v   . According to the derivations in 

[33,34],  
2

nano bulk nano bulk

ph ph D D
l l   . After some simple algebraic transformations taking into account all the 

considerations above, we obtain Eq. (1) for the phonon contribution to the thermal conductivity of a 

nanoparticle, nano

ph
 , as a function of its morphology; bulk

ph
  represents the lattice thermal conductivity of the 

bulk material. 

   
  

522 31
3

0
exp 1 1 6 .nano bulkDD

ph eff eff at ph
l d C d r   



                                           (1) 

 

Decreasing the size of nanoparticle and “complicating” its morphology lead to a more significant 

phonon scattering effect which, in its turn, affects the heat transfer process in nanostructures. A set of models 

describing the phonon scattering process in nanosystems in different conditions is given in Ref. [35]. In this 

paper, in order to demonstrate the essence of the phenomenon, we have applied the simple model which has 

been previously used by M. Goyal [36] (its experimental verification in several cases is also described in 

[36]). In the framework of this model, we have included pre-term  exp 1
bulk

ph eff
l d   in Eq. (1) where   is 

the surface roughness parameter,  0,1  , while ratio bulk

ph eff
l d is known as the Knudsen number. According 

to [36], the larger values of   correspond to a smoother nanoparticle surface leading to a higher probability 

of the specular scattering and to a lower probability of the diffusive one. Whereas the lower the value of   is, 

the rougher the surface is, which leads to an increase in the probability of the diffusive scattering resulting in 

a significant decrease in the lattice thermal conductivity (see Fig. 3).  

Note that the correlation between surface roughness   and fractal dimension D of a nanoparticle is not 

unique (since their nature itself is different: the fractal dimension value is associated with the surface-to-

volume ratio while the surface roughness corresponds primarily to the number of edges. For example, an 

amoeba-like particle with no edges or an ellipsoid with a high aspect ratio can have fractal dimensions 

significantly below 3 while their surface roughness parameters can be near to 1). Several notes on the 

dependence of fractal dimension on the surface roughness are given in [37] (see also their graphical 

representation in Fig. 2 of [37]). In our considerations, we have varied parameter   from 0.85 up to 1 in 

increments of 0.05. Without any losses of generality, coefficient C, which also matches dimensions, is 

accepted to be 4π for the sake of convenience. The phonon mean-free path for pure Bi in the bulk state as 

well as the value of its lattice thermal conductivity have been obtained ab initio in [13]. Fig. 3 is plotted for 

the case the heat transfer takes place in the “binary” crystallographic direction ((100)) while the operation 

temperature of the thermoelectric element is 100 K.  

In is also worth mentioning that a high surface-to-volume ratio leading to significant changes in the 

number of surface atoms as well as in the cohesive energy is characteristic not only to nanoparticles and their 

ensembles but also for nano- and mesoporous media (see, for examples, our calculations in [38,39]). In such 

cases, we may expect the dependences of thermal properties on the pore morphology similar to the ones 

described above. The formation of such structures is possible, for example, during the early stages of spark 

plasma sintering, laser sintering of nanopowders as well as using a variety of other techniques (see [39] and 

Refs. therein). 
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Fig. 3. The dependence of the phonon contribution to the thermal conductivity coefficient on fractal 

 dimension D and surface roughness parameter   for a nanoparticle of pure Bi with deff=40 nm. 

2. Additional remarks on nanoparticle ensembles 

In the In the case of nanoparticle ensembles, the average functional properties of particles depend on the 

size and shape distributions in an ensemble. In [40,41], we have suggested a method for calculating such 

distributions based on the combined usage of number theory, fractal geometry and statistical 

thermodynamics. For example, the equilibrium size distributions for nanoparticles with fractal dimension D 

in a free-dispersed system can be expressed as follows: 

 
 

 sp
ln 2 2

, , exp ,   exp π .
3 3

p

D p p p

p

A D RT f N
f D N f N N

RT N


 




   



     
   
     

             (2) 

Here,  
3

eff at
ω

p
d d  is the number of atoms in a nanoparticle (its so-called “stoichiometric number”), 

ω  is the lattice packing density, N is the total number of atoms in the system,  
sp

A D is the specific surface 

area of the ensemble,  is the surface energy of the material in the considered external environment; 
at

d  is 

the atomic diameter. The presented estimates are in perfect accordance with the experimental data (see [40] 

and Refs. therein) and make it possible to model the thermodynamical conditions for the realization of 

optimal average geometric characteristics of nanoparticles leading to the optimal thermal and thermoelectric 

properties as well to predict the degree at which such properties are “blurred” in an ensemble. For example, 

average fractal dimension D  and average stoichiometric number p
  of nanoparticles in the ensemble 

can be calculated as follows: 

 

 

 

 
   

, , , ,

,    ,    , , .

i D i p p p D i p p

i i

p D i p p

i

D f D N d f D N d

D N f D N d
N N

    

     
 

  
    (3) 

Here, the limits of the integration over 
p

  belong to range  1, N  while the sample of distributions is 

considered where  2, 3
i

D  with an arbitrarily selected step. 

Similarly, the suggested model makes it possible to determine some other properties of a nanoparticle 

ensemble, such as effective linear nanoparticle size 
eff

l  (the edge length of the equal-volume cube) or 

effective nanoparticle diameter 
eff

d  (several remarks on the calculation of such values are given in [40]): 

       
1 11 3

, ,    , .
eff at p D i p p eff at D i p p

i i

l N d f D d d N d f D d    
 

                          (4) 
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It is necessary to note that the numerical calculations of integrals such as    , ,
i p D i p p

x D f D d   , the 

upper integration limit being comparable to the Avogadro number, is quite complicated due to the fact the 

contribution of  “huge” particles  0.6
,

p A A
N N      is practically equal to zero. In their standard description, 

the calculation of such integrals using the software packages such as Mathworks MathCAD or Wolfram 

Mathematica can be misleading. In the case Wolfram Mathematica is used, the problem can be solved by 

modifying the integration method as follows:   " "," " 0Method DoubleExponential SymboliсРrocessiпg  . 

Mathworks MathCAD allows selecting the integration technique: dividing the integration region into the 

intervals corresponding to the maxima of function  , ,
D i p

f D N  has turned out to be the most appropriate 

approach. 

Wolfram Mathematica allows replacing sum    , ,  ,
i p D i p p

i

x D f D dN   with double integral

   , , ,
p D p p

x D f D N d dD    ; in this case, the final result can be obtained through integrating sequentially, at 

first, over 
p

 :          , , , , 1,,  
i p D i p p p

X D N x D f D N d N     ; thereafter, over D :    ,X N X D N dD  . 

Conclusion 

Estimating the fractal dimension of nanoparticles using the optical or electron microscopy data can be 

carried in the framework of various approaches [42]. Among them, it is necessary to mention the so-called 

“box-counting technique” [43] which allows determining with satisfactory accuracy either the two-

dimensional fractal characteristics or the three-dimensional ones using halftone microscopic images. In the 

two-dimensional case, the technique can be described as follows: the analyzed microscopic image is 

converted into a monochrome one, the illumination gradient being eliminated and the brightness being 

normalized if necessary. A mesh is specified over the image with a predetermined step, and then the image is 

transformed into a binary matrix where “1” corresponds to the mesh cells with the brightness above the 

specified threshold value. “0” corresponds to the others. Fractal dimension D  is estimated according to the 

following dependence: 𝑆 ∼ 𝐿𝐷 (to within a dimensional factor) where S  is the area of the “white” surface 

(equal to the number of coloured mesh cells) while L  is the linear size of the image (matrix rank) [44]. It is 

worth mentioning that the value of fractal dimension D  is sensitive to the chosen brightness threshold, P , 

in the most general case. For the well-founded selection of the value of P  as well as for the elimination of 

possible ambiguations, the calibration dependence,  D P , is constructed; the example of such dependence 

is given in [46]. In the three-dimensional case, a 3D mesh is specified where two axes correspond to the 

spatial coordinates while the third one stands for different levels of the image brightness. The fractal 

dimension is determined using the relation between the number of cells with the brightness above the 

specified threshold and the total number of cells. For each cell with a high brightness value, all the cells 

below are also taken into account. 
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