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The detection of gravitational waves came from a pair of merging black holes marked the beginning of the 

era of GW astronomy. Traditionally, to extract gravitational wave signals from experimental data, the scientific 

collaborations use the standard matched filtering technique. The matched filtering technique relies on the existing 

waveform templates, that makes it difficult to find gravitational wave signals that go beyond theoretical 

expectations. Moreover, the computational cost of matched filter is very high, as it depends on the number of 

templates used. In this article, we propose a new information-entropy method for gravitational waves detection 

that does not require a theoretical bank of signal templates. To demonstrate the reliability of our method we 

conducted an analysis using simulated and real data. Through this study, we revealed that our measure of 

conditional information detects the gravitational wave signals and can be used along with the matched filtering 

method. 
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Introduction  

The first direct detection of gravitational waves (GWs) by the advanced LIGO observatory proved the 

fundamental predictions of Einstein’s theory of General Relativity and started the era of GW astronomy. The 

registration of first GW, the so-called GW150914, was realized due to the merger of two binary black holes 

with estimated masses of 29 M⊙ and 36 M⊙ [1]. During three observing sessions (O1, O2, O3) the LIGO 

and VIRGO collaborations recorded 90 GW signals produced by the coalescence of compact objects, mainly 

pairs of black holes with a small fraction of neutron star [1-7]. 

The detection of GWs is one of the most difficult tasks faced in fundamental science since the GW 

signal is much weaker compared to typical noise levels. To detect GW signals from the experimental data, 

the LIGO and Virgo collaborations mainly use the matched filtering method [8-10]. This method convolves a 

set of precalculated template waveforms with the measured data, where each template represents a source 

with different components such as masses, spins, etc. For each template waveform, a signal-to-noise ratio 

(SNR) time series is calculated, and candidates are determined according to the peak of the SNR time series. 

The matched filtering method is optimal for signal detection in Gaussian noise, where it yields the most 

statistically significant detection candidates [11]. However, this method, in order to match the signal, does a 

full search in the bank of templates, which in turn can slow down the data processing speed [12]. 

Furthermore, the premise of matched filtering method requires an accurate theoretical template. If GWs are 

beyond theoretical expectations, this may lead to the fact that gravitational wave signals not being detected 

[10]. 

Currently, information-theoretic approaches have found wide application in modern signal processing 

problems. Information-entropy technique quantifies the degree of complexity and irregularity of a signal. It 

is known that information is a measure of certainty, and entropy is a measure of uncertainty or disorder 

(noise). These two characteristics are analytically related and can provide a theoretical basis for describing 

signal characteristics. In papers [13-15], information entropy detection methods have been successfully 

applied to signal recognition. In this paper, we propose a new information-entropy method for gravitational-

wave data analysis. The novelty of the method lies in the use of conditional information, defined as the 

difference between the joint and conditional entropy. In addition, this method does not require the 

construction of a theoretical bank of signal templates.  

The contents of this paper are structured as follows. In section 1, we introduce our measure of 

conditional information by comparing it with the usual definition of Shannon's mutual information. In 
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section 2, we present the data generation for testing our method and describe our algorithm for determining 

the difference in conditional information. In Section 3, we present a result of numerical analysis of model 

and real gravitational wave signals. In section 4, we make a conclusion.  

1 Conditional information defined through the entropy difference 

Let us consider discrete time series of signals 𝑋 ={𝑥[𝑛]}, Y ={𝑦[𝑛]} given through samples with 

numbers n, which have a statistical relationship, forming an ensemble (𝑋, 𝑌). Assume that 𝑋 is the received 

signal, Y ={Δ𝑥[𝑛]} is the signal interference. By the signal interference we mean pulsed, chaotic and noise 

disturbances of the signal Δ𝑥[𝑛] caused by nonlinear distortions of the signal itself and external influences. 

Let us take the notation ∆𝑥[𝑛], 𝑛 =1,2,3 – numbers of the samples, 𝑦[𝑛] = ∆ 𝑥[𝑛]- the interval of 

deviation from 𝑥[𝑛] caused by interference. The deviation interval is defined by the central (symmetric) 

difference ∆𝑥[𝑛] = (𝑥[𝑛 + 1] +  𝑥[𝑛 − 1])/2 −  𝑥[𝑛]. Using this form of ∆ 𝑥[𝑛] instead of the one-sided 

difference 𝑥[𝑛 + 1]  −  𝑥[𝑛] allows us to consider the second derivative of 𝑋, i. e. the wave shape. The 

second derivative of any nonlinear function is nonzero except for its zero value at the inflection point. Near 

the inflection point, the function changes impulsively, which gives a reason to use a neutral difference to 

detect GW in the form of nonlinear bursts of the signal disturbances. At the point of inflection, the required 

information will be minimal.  

Further, we consider the general concepts of mutual information and entropy, followed by the 

introduction of our measure. It is known that mutual information measures the nonlinear relationship 

between two random variables. Moreover, mutual information can show us how much information can be 

obtained from one random variable by observing a second random variable. Mutual information has a close 

relationship with the concept of entropy. Because in some cases, when one of the variables is known, mutual 

information to some extent can reduce the uncertainty of another random variable. Thus, this means that a 

high value of mutual information indicates a large reduction of uncertainty, and a small reduction if the value 

is low. In cases where the mutual information is zero, this means that the two random variables are 

independent [16-18]. 

The commonly used mutual information 𝐼(𝑌; 𝑋) transmitted over the communication channel 𝑋 is 

determined by the difference between the one-dimensional and conditional Shannon entropies 𝐻(𝑌), 𝐻(𝑌|𝑋) 

[18-20]. The relationship between these values is shown in the following formula: 

 

𝐼(𝑌; 𝑋) = 𝐻(𝑌) − 𝐻(𝑌|𝑋),                                                                                                                                     (1) 

 

As explained before, mutual information 𝐼(𝑌; 𝑋) is related to entropy and to understand what 𝐼(𝑌; 𝑋) 

actually means, we need to define entropy and conditional entropy. It is known that entropy of a random 

variable is the average level of “uncertainty” inherent to the variable’s possible outcomes. For example, if we 

have a discrete random variable 𝑌, with possible outcomes 𝑥1,𝑥2, 𝑥𝑛  which happen with probability 𝑝1, 𝑝2, 

the entropy of 𝑌 is defined as following: 

 

𝐻(𝑌) = − ∑ ∑ 𝑝(𝑥[𝑖], 𝑦[𝑗]) 𝑙𝑜𝑔2 𝑝 (𝑦[𝑗])𝑀
𝑗=1

𝑁
𝑖=1 .                                                                                                (2) 

 

Entropy 𝐻(𝑌) can measure the level of expected uncertainty in a random variable. This means that 

𝐻(𝑌) is roughly how much information can be learned of the random variable 𝑌 by observing just one 

sample. Conditional entropy can measure how much uncertainty has the random variable 𝑌, when we know 

the value 𝑋. And we can define conditional entropy according to the following formula: 

 

𝐻(𝑌|𝑋) = − ∑ ∑ 𝑝(𝑥[𝑖], 𝑦[𝑗]) 𝑙𝑜𝑔2 𝑝 (𝑦[𝑗]|𝑥[𝑖]),                                                                                  (𝑀
𝑗=1

𝑁
𝑖=1 3) 

where,  

 

𝑝(𝑦[𝑗]|𝑥[𝑖]) =𝑝(𝑥[𝑖], 𝑦[𝑗]) / 𝑝(𝑥[𝑖]).                                                                                                                     (4) 

 

And 𝑝(𝑥[𝑖], 𝑦[𝑗]), 𝑝(𝑦[𝑗]), 𝑝(𝑦[𝑗]|𝑥[𝑖]) are the joint, one-dimensional, and conditional probabilities of 

the points of the phase space (X; Y) falling into squares with a relative size δ<<1. In formula (2), the equal to 

1 sum over i is left for convenience of further analysis [21-23]. 

From formulas (1)-(3) follows 
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𝐼(𝑌; 𝑋) = ∑ ∑ 𝑝(𝑥[𝑖], 𝑦[𝑗]) 𝑙𝑜𝑔2
𝑝(𝑥[𝑖],𝑦[𝑗])

𝑝(𝑥[𝑖])𝑝(𝑦[𝑗])
𝑀
𝑗=1

𝑁
𝑖=1 .                                                                                         (5) 

 

In the absence of a mutual correlation between 𝑥[𝑖], 𝑦[𝑗], there is 𝑝(𝑥[𝑖], 𝑦[𝑗]) =𝑝(𝑥[𝑖]), hence, 

𝐼(𝑌; 𝑋) = 0. From the structure of formula (5), mutual information is symmetric with respect to permutation 

of variables 𝑋 ⇄ 𝑌: 𝐼(𝑌; 𝑋) = 𝐼(𝑋; 𝑌), the roles of the signal interference are not different. For these 

reasons, for the set goal (𝑋 and 𝑌 should be different variables), it is necessary to use another measure of 

certainty - conditional information, which we will determine through the difference of the entropies. 

 

𝐼(𝑌|𝑋) = 𝐻(𝑋, 𝑌) − 𝐻(𝑌|𝑋).                                                                                                                  (6) 

 

In formula (6) 𝐻(𝑋; 𝑌) is a joint entropy of the ensemble [24-26]: 

 

𝐻(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥[𝑖], 𝑦[𝑗])𝑙𝑜𝑔2𝑝(𝑥[𝑖], 𝑦[𝑗])𝑀
𝑗=1

𝑁
𝑖=1                                                                              (7) 

 

When we consider together two random variables the joint entropy measures the uncertainty. In contrast 

to mutual information, conditional information is asymmetric with respect to the permutation of the variables 

𝑋⇄𝑌 since 𝐻(𝑌|𝑋) ≠ 𝐻(𝑌|𝑋). Dividing formula (6) by (7), we derive a kind of well-known conservation 

law for the normalized values of conditional information and entropy. 

 

𝐼(𝑌|𝑋) + 𝐻̃(𝑌|𝑋) = 1,           𝐻̃ = 𝐻/𝐻(𝑋, 𝑌)            𝐼 = 𝐼/𝐻(𝑋, 𝑌).                                                      (8) 

 

The relationship between information and entropy in the form of formula (8) is known for the 

Boltzmann entropy for an equilibrium state, or in the case of choosing Y as constant parameters. We choose 

the condition Y in the form of characteristic features of the desired signal determined from the experimental 

data. 

From formula (8) we get the difference of conditional information 

 

∆𝐼 = 𝐼(𝑌|𝑋) − 𝐼(𝑋|𝑌) = 𝐻̃(𝑋|𝑌) − 𝐻̃(𝑌|𝑋).                                                                                        (9) 

 

When the variables 𝑋⇄𝑌 are permuted, conditional information and entropy acquire different 

meanings. For example, 𝐼(𝑌|𝑋) determines information about a burst of nonlinear disturbances 𝑌 (about the 

presence of GW) in a known noise signal 𝑋. The corresponding decrease in entropy describes 𝐻(𝑌(𝑋)) −
𝐻(𝑌|𝑋). The decrease in information corresponds to an increase in entropy 𝐻̃(𝑋|𝑌). If ∆𝐼 > 0, the signal is 

detected, while if  ∆𝐼 < 0 there is no signal. This criterion can also have positive values in cases with 

rearranged variables (𝑋; 𝑌). These cases correspond to a sharp decline in Y near the inflection point. The use 

of ∆𝐼 increases the reliability of signal analysis. 

Assume that the calculated variable Y has a systematic error ∆𝑌(𝑌 = 𝑌[0] + ∆𝑌). Limiting ourselves to 

the first term of the Taylor series expansion at the point 𝑌[0], we get the function ∆𝐼 

 

∆𝐼 = ∆𝐼(𝑌[0]) +
𝑑∆𝐼

𝑑𝑌
| ∆𝑌

𝑌=𝑌[0]
                                                                                                                  (10) 

 

When calculating the derivative in (10) through finite differences, ∆ 𝑌 falls out. For weak signals with a 

signal-to-noise ratio of the order of one, a small increment from ∆𝐼 may not arise as a signal. Thus, a weak 

signal with a systematic error ∆𝑌 of the individual terms in (9) may be absent when calculating ∆𝐼. 

2 Algorithm for determining the difference of conditional information 

2.1 Data generation 

To thoroughly test our algorithm, we use PyCBC package [27] to generate the GW signals. The 

parameters of the model signals are selected according to the article [9]. The GW signal is determined by the 

component masses m1, m2 randomly selected in the range from 10 to 50M⊙ and phases in the range φ0 

from 0 to 2 pi. In accordance with the selected target SNR, the amplitude and distance of the source are 

determined. We assume the presence of one LIGO Hanford detector, whose inclination and polarization 
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parameters are equal to 0, since any change in these parameters can be completely absorbed by changes in 

the amplitude and phase of the signal. The signals are whitened by dividing the Fourier transformed signal 

by the square root of the power spectral density (PSD) to reduce power at frequencies within the sensitivity 

of the detector. Noise modeling and whitening is also done using the same PSD that was used to whiten the 

signals. The colored noise whitening eliminates error sources, and it is applicable to real noise. The 

simulated signals are randomly placed in a time series (-16:16 s) with the condition that the peak amplitude 

of each signal is randomly located in the time series range from 0.75 to 0.95. After that, to achieve the 

optimal signal-to-noise ratio (SNR), the signal amplitude is scaled. And the optimal SNR 𝜌𝑜𝑝𝑡 can be 

determined by [9] 

 

𝜌𝑜𝑝𝑡
2 = 4𝑅𝑒 [∫ 𝑑𝑓

ℎ̃(𝑓)ℎ̃∗(𝑓)

𝑆𝑛(𝑓)
] ,                                                                                                                         (11) 

 

where ℎ̃ is the frequency domain representation of the GW strain, ℎ̃∗ is its conjugate, 𝑆𝑛 is the PSD and Re 

extracts the real part of the complex number. A data set was generated for each predefined optimal SNR 

value in the range from 2 to 10 with integer steps. 

2.2 Algorithm realization 

From the discrete signal of the GW , Δ𝑋 is calculated by the formula: 

 

Δ𝑥[𝑛] =
𝑥[𝑛 + 1] +  𝑥[𝑛 − 1]

2
−  𝑥[𝑛]                                                                                                             (12) 

 

Using the well-known Sliding Window algorithm, we divide a given discrete time series x [n] and Δ𝑥 

[n] into windows with a length of L points. If we assume that the time delay parameter of the analysis 

window is 1, then the signal sequence X [n] can be divided into segments with the number N – L, which form 

the following matrices x [n] →X and Δx[n] →ΔX. 

 𝑋 = |

𝑥[1] 𝑥[2], … 𝑋[𝐿]
𝑥[2], 𝑥[3], … 𝑥[𝐿 + 1]

𝑋[𝑁 − 𝐿], … , 𝑥[𝑁]
| 

 
and 

 Δ𝑋 = |

𝛥𝑥[1], 𝛥𝑥[2], … 𝛥𝑥[𝐿]
𝛥𝑥[2], 𝛥𝑥[3], … 𝛥𝑥[𝐿 + 1]

𝛥𝑥[𝑁 − 𝐿], … , 𝛥𝑥[𝑁]
| 

 
To determine the difference of conditional information, the plane X[n] and ΔX[n]. is constructed and 

divided into cells (i x j). Next, the probability of each cell is determined and the probability matrix P(xi,y,j)is 

obtained. From the probability matrix, we determine the difference of conditional information by the (9).  

3 Results of numerical analysis of gravitational wave signals 

In our method, when we detect the GW signal, the difference of conditional information ∆𝐼 increases, 

while the noise fluctuates around zero. In order to define the window size and threshold value of conditional 

information ∆𝐼, we calculate the false positive ratio (FPR) (Fig. 1).  

The FPR is one of the important standard metrics, that is used to evaluate the detection of GWs. The 

FPR can be defined as follows 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
,                                                                                                                                                   (13) 

 

where FP is the number of false positive predictions, TN is the number of true negatives. 
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Fig. 1. The plot shows the dependence of the FPR on the window size, where, the threshold (th) value changes in the 

range from 0.04 to 0.1 with a step of 0.02.  We calculated the FPR for the one GW model signal, whose SNR=10. 

 
According to the figure 1, when the window size is L>2000 and the threshold value is th>0.1, the signal 

is detected without any errors. From a data set consisting of 10 000 signals at each SNR, the number of 

detected signals was calculated using our method. Further, to calculate the efficiency (fig.2), we choose the 

window size of 3000 and a threshold value of 0.1 for the validation accuracy.  

The efficiency is then determined by 

 

efficiency =  
𝑁∆𝐼̃>𝑡ℎ

𝑁𝑠
 ,          (14) 

 

where 𝑁∆𝐼>𝑡ℎ is the number of detected signals, 𝑁𝑠 is the total number of signals.  

 

 
Fig. 2. The efficiency as a function of optimal SNR 

 

The results in Fig. 2 show that the efficiency increases with the optimal SNR and achieves 100 % at an 

SNR of 9. To demonstrate the feasibility of our method, we conducted analysis using real LIGO data. Fig. 3 

(b, c, d, e) shows the values I ̃(Y;X),I ̃(Y│X),I ̃(X│Y), ∆I ̃ for the GW150914 event, calculated by formulas 

(1), (8), (9), correspondingly. 

From Fig. 3 (b) it can be seen that the value of mutual information I ̃(Y;X)  fluctuates around the same 

level and does not changed over the entire time interval and shows nearly 0.19. While the value of 

conditional information I ̃(Y│X) and the difference of conditional information ∆I ̃ increased at the time of 

detection of the desired signal nearly from 0.7 to 0.9 and from 0 to 0.6, respectively. As for the value of 

conditional information I ̃(X│Y), it decreased at the time of detection of the gravitational wave from 0.75 to 

0.25 approximately.  
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Fig. 3. Event GW150914H: whitened signal GW (a), mutual information I (̃Y;X)  (b), conditional information 

I (̃Y│X)  (c), conditional information I (̃Y│X)  (d), difference of conditional information ∆I  ̃(e), where number of 

samples L=3000 

 

The validity of using the information-entropy method proposed by us is shown in Table 1.  

 
Table 1. Results of information-entropy analysis of GW signals from the Handford (H) and Livingston (L) 

detectors. M/M_⨀ is the total mass of black holes relative to the mass of the Sun, SNR is the signal-to-noise ratio, R is 

the distance to the source according to [1-5, 28]. 

 

Event 𝐼(𝑌|𝑋) 𝐼(𝑋|𝑌) ∆𝐼 SNR 𝑀/𝑀⊙ R 

[1], GW150914H  

GW150914L  

+ 

+ 

+ 

+ 

+ 

+ 

24.4 62 410 Mpc 

[2], GW151226H  

GW151226L  

+  

(minimum) 

- 

- 

F- 
+ (𝑌|𝑋 → 𝑋|𝑌) 

- 

13.1 21.4 4292 Mpc 

[3], GW170104H  

GW170104L  

+ 

+ 

+ 

+ 

+ 

+ 

13.0 51.1 880 Mpc 

[4], GW170608H  

GW170608L  

- 

- 

- 

- 

- 

- 

14.9 18.5 340 Mpc 

[5], GW170814H 

GW170814L 

+ 

+ 

+ 

+ 

+ 

+ 

15.9 56.0 5518 Mpc 

[6], GW170817H 

GW170817L 

+ 

+ 

+ 

+ 

+ 

+ 

33.0 2.73 40 Mpc 
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The following Table 1 presents an analysis of the mutual I ̃(Y;X), conditional information I ̃(Y│X) of six 

gravitational wave (GW) events recorded by the Hanford (H) and Livingston (L) detectors.  The plus (+) 

symbols mean the detection of a signal with highlighted positive values I ̃(Y│X), I ̃(X│Y), ∆I ̃. Minus (–) 

symbols mean that there is no highlighted maximum or minimum in the difference of conditional 

information.  The GW151226, GW170608L signals have a low signal-to-noise ratio and total masses of 

black holes relative to other signals (Table 1). 

Conclusion 

From the above study, it can be seen that the proposed information-entropy method demonstrates the 

good performance in GW data recognition. According to the obtained results, in all six GW events the values 

of mutual information I ̃(Y;X) do not changed over the entire time interval, while the difference of 

conditional information ∆I ̃ increases sharply at the time of gravitational waves detection. It clear that the 

new measure introduced by us – conditional information ∆I ̃ detects a signal, and the known measure – 

mutual information I ̃(Y;X) does not reveal a signal. According to the results obtained, the method can serve 

as an addition to the existing methods for analyzing GW signals.  

Furthermore, this method in comparison with the well-known matched filtering method can discover 

signals beyond the existing templates. We believe that this method will undoubtedly play an important role 

in searching GW signals beyond what we have in the existing template bank. 
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