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The liquid state theory is not a simple section of the modern theory of metallurgical processes. Any 

substance in liquid state is a difficult object to establish not only quantitative, but also qualitative 

patterns, being that liquid state is intermediate between solid and gaseous states. Theoretical 

hydrodynamics has long attracted attention of various specialties’ scientists: comparative simplicity of 

the basic equations, precise problems formulation and clarity of its experiments inspired hope of getting 

a dynamic phenomena’s complete description occurring in melts. In describing continuous media’s 

dynamic properties the following systems of equations were obtained: for a viscous melt - the Navier – 

Stokes equations, for an ideal melt - the Euler equations, for a weakly compressible melt - the Oberbeck 

– Boussinesq equations. In fundamental research and in the field of applied research these 

mathematical models are generally accepted for modeling melt flow. Theoretical processes descriptions 

occurring in melts are based on the Stokes – Kirchhoff theory, which, with the frame of classical 

hydrodynamics, revealed phenomenological connections between the molten systems’ kinetic 

properties. Numerous hydrodynamic paradoxes point to that long and thorny path that has been 

covered since its inception. First long stage was associated with the study and research of ideal 

incompressible liquid’s potential flows. Mathematical methods of their research using the theory of 

complex variable functions seemed almost perfect. Imperfection of the ideal liquid theory was indicated 

by the famous Euler-Dalamber paradox: the total force acting on a body flowing around a potential 

flow is equal to zero. Then a mathematical model of a viscous incompressible fluid with its basic 

Navier-Stokes equations was created. Proposed section outlines various methods for solving and 

studying the Navier – Stokes equations. At the present stage, a great effort is made to find localized 

hydrodynamics equations solutions. 

Keywords: Metal melt, hydrodynamic equations, velocity profile, mathematical modeling, computer 
simulation, density functional 

Introduction 

Objective - to obtain the most simple regularization of the original system of hydrodynamic 

equations containing a physical sense. As known [1, 2], hydrodynamic equations approximation 

leads to non-linear systems of equations. Therefore, their solution is accompanied by complex 

problems. These problems create difficulties in solving multidimensional tasks using fairly well-

known implicit schemes in time. The task of obtaining original system’s the simplest regularization, 

containing a certain physical meaning, becomes urgent. In order to solve these tasks, in our opinion, 

most constructive approach is a splitting method. In this connection, we considered various 

approaches to the splitting schemes construction for the Navier - Stokes equations in the weak 

approximation sense.  

Main task of article is to determine the viscous incompressible melt’s motion, if external forces 

acting on the melt are known, the boundary mode and, for a non-stationary flow, the initial velocity 

field. Basically, we assume that there is a coordinate system in which the filled with the melt is 

unchanged. The assumption of the field’s constancy is fulfilled in such practically important tasks 

as the problem of flowing a solid body with an infinite flow; the problem of the liquid motion under 
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the action of volume forces in a vessel with solid walls moving in a known manner in space and 

others.  

1. Decision problem 

We consider a flat flow. Let  area of Euclidean space
nR , and    21,xxx  . We divide 

whole space  txRn , on elementary cells, the area of which: 
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with initial boundary conditions: 
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where  is energy dissipation,  tx,  velocities' vector function,  tx, temperature field, 

 tx, density field,  txp , pressure field,  txf , mass force vector,  melt viscosity, 

  thermal conductivity coefficient,  n  -   external normal to the boundary of S ,    .1,0e  

In order to demonstrate given method after appropriate transformations, we rewrite equation 

(1) in form: 
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There are various approximations of difference operator kZ . We take this operator in the form 

proposed in   [4-9]: 
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Then equation (2) can be represented by following difference scheme: 
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Thus, we obtain equations (3) – (6), which are solved separately. This allows you to write 

machine programs for the numerical finite-difference methods implementation. We consider 

application of proposed method on Dirichlet problem example for the Poisson equation given in [6-

15]. Integration is performed in a rectangular lattice in accordance with fig. 1. Asterisk indicates 

internal nodes, boundary nodes are denoted by «◦».  

 

 
Fig.1. Integration area 

2. Results and discussions  

According to the reference data, solution of the Poisson equation is given in table 1. For the 

control example in Table 2 we give the Dirichlet problem’s solution already with different boundary 

conditions from same reference sources. Comparing first and second Dirichlet boundary value 

problems’ solutions from reference sources presented in tables 1 and 2 with program results for 

solving boundary value problems presented in tables 3 and 4, we see a satisfactory coincidence of 

solutions for a given accuracy .10 1   
 

Table 1. First Dirichlet boundary value problem’s solution for the Poisson equation from reference 

sources 

Y X 

0.00 0.40 0.80 1.20 1.60 2.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.20 0.08 0.32 0.51 0.72 0.99 0.84 

0.40 0.32 0.72 1.07 1.41 1.78 1.76 

0.60 0.72 1.23 1.68 2.12 2.56 2.76 

0.80 1.28 1.82 2.65 3.22 3.82 3.84 

1.00 2.00 2.44 2.96 3.56 4.24 5.00 

 

Table 2. Second Dirichlet boundary value problem’s solution for Poisson equation from reference 

sources  

Y X 

0.00 0.40 0.80 1.20 1.60 2.00 

0.00 1.00 1.40 1.80 2.20 2.60 3.00 

0.20 2.00 1.05 0.95 1.08 1.44 2.96 

0.40 2.00 1.02 0.60 0.59 0.93 2.84 

0.60 4.00 1.36 0.78 0.63 0.93 2.64 

0.80 5.00 2.78 2.12 1.81 1.64 2.36 

1.00 6.00 5.84 5.36 4.56 3.44 2.00 
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Table 3 - First Dirichlet boundary value problem’s solution for the Poisson equation with a given 

accuracy 110  
 

Y X 

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800 2.000 

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.2 0.080 0.241 0.262 0.264 0.266 0.269 0.272 0.276 0.280 0.330 0.840 

0.4 0.320 0.303 0.301 0.303 0.305 0.308 0.311 0.315 0.320 0.447 1.760 

0.6 0.720 0.356 0.305 0.306 0.308 0.310 0.314 0.318 0.323 0.538 2.760 

0.8 1.280 0.429 0.310 0.308 0.310 0.313 0.316 0.320 0.325 0.636 3.840 

1.0 2.000 0.523 0.315 0.311 0.313 0.315 0.319 0.323 0.329 0.741 5.000 

1.2 2.880 0.639 0.322 0.314 0.316 0.319 0.322 0.326 0.332 0.854 6.240 

1.4 3.920 0.776 0.330 0.318 0.320 0.323 0.326 0.330 0.337 0.974 7.560 

1.6 5.120 0.935 0.341 0.323 0.326 0.329 0.332 0.336 0.343 1.105 8.960 

1.8 6.480 1.248 0.581 0.613 0.674 0.744 0.821 0.906 1.002 1.946 10.44 

2.0 2.000 2.440 2.960 3.560 4.240 5.000 5.840 6.760 7.760 8.840 10.00 

 

 

Table 4 - Second Dirichlet boundary value problem’s solution for the Poisson equation with a given 

accuracy 110  
 

Y X 

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800 2.000 

0.0 1.000 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000 

0.2 2.000 1.109 1.011 1.012 1.016 1.019 1.023 1.026 1.029 1.138 2.960 

0.4 3.000 1.215 1.004 0.997 0.996 0.994 0.992 0.990 0.988 1.087 2.840 

0.6 4.000 1.325 1.007 0.997 0.995 0.993 0.991 0.988 0.985 1.074 2.640 

0.8 5.000 1.436 1.009 0.996 0.994 0.992 0.989 0.986 0.983 1.057 2.360 

1.0 6.000 1.546 1.012 0.995 0.993 0.990 0.987 0.984 0.981 1.035 2.000 

1.2 7.000 1.656 1.015 0.994 0.992 0.989 0.986 0.983 0.979 1.008 1.560 

1.4 8.000 1.767 1.017 0.994 0.991 0.988 0.984 0.981 0.977 0.977 1.040 

1.6 9.000 1.877 1.020 0.993 0.990 0.986 0.983 0.979 0.975 0.942 0.440 

1.8 10.00 2.018 1.059 1.027 1.022 1.016 1.009 1.000 0.992 0.917 -0.24 

2.0 6.000 5.960 5.840 5.640 5.360 5.000 4.560 4.040 3.440 2.760 2.000 

 

Table 5 - First Dirichlet boundary value problem’s solution for the Poisson equation with a given 

accuracy 410  
 

Y X 

0.000 0.400 0.800 1.200 1.600 2.000 

0.00 0.000 0.000 0.000 0.000 0.000 0.000 

0.20 0.080 0.301 0.508 0.750 1.001 0.800 

0.40 0.320 0.730 1.055 1.430 1.851 1.710 

0.60 0.720 1.221 1.666 2.101 2.590 2.732 

0.80 1.280 1.790 2.599 3.202 3.798 3.884 

1.00 2.000 2.490 2.981 3.549 4.290 5.001 

 

It should be noted that the increase in accuracy leads to an increase in the cost of machine time, 

which is 45 minutes.  In general, a large number of experiments have been made for increase in 

accuracy of mathematical model, with a step of the tension of the x-ray radiation of 5 kV.  

 



150  ISSN 1811-1165 (Print);  2413-2179 (Online)  Eurasian Physical Technical Journal, 2020, Vol.17, No.1 (33)   

 

Conclusion 

Obtained results show compiled program’s correctness, as well as correctness of the stated 

boundary value problems for hydrodynamic equations considered by us above. In this article, we 

establish one of the important moments of the Navier – Stokes equations’ theory: the unique 

stationary problems’ solvability in the case of their linearization. This is most easily done in a 

Hilbert space with a well-defined extension of the solution concept, which will be described 

below.Here are specific algorithms for computer programming.  
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