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In this work, an analytical study of the two-dimensional nonlinear Schrodinger equation is 

presented, namely, the applicability of the sine-cosine method to search for the exact solution as a 

traveling wave. The widely known nonlinear Schrödinger equation plays an important role in the study 

of the theory of nonlinear waves in various fields of physics and has a huge number of exact solutions. 

This equation describes the evolution of the changing amplitude of nonlinear waves in various systems, 

such as weakly nonlinear and highly dispersive. One of the methods for obtaining exact solutions is the 

sine-cosine method. The advantage of this method is its simplicity and reliability in obtaining solutions 

to nonlinear problems. According to the method, the nonlinear evolution equation is reduced to the 

associated ordinary differential equations by wave transformation and then solved by sine or cosine 

functions. As a result of the applicability of the sine-cosine method, the traveling wave solutions are 

obtained for a two-dimensional nonlinear Schrodinger equation. 2D-graphs and 3D-graphs of the 

obtained solutions are shown. 
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Introduction  

Nonlinear equations with dissipation and dispersion effects that arise in scientific applications 

have been under the huge size of investigations. They have various applications in various fields of 

science, such as mathematical and chemical physics, solid state physics. Many vigorous methods, 

such as Hirota method [1-3], the extended tanh method [4-6], the sine–cosine method [6-8], 

Darboux transformation [9-13], Kudryashov method [14] and others were successfully applied to 

study these types of equations. One striking example of this type of equation is the nonlinear 

Schrödinger equation, which plays an important role in the theory of nonlinear waves. 

The  two-dimensional nonlinear Schrodinger equation 

 𝑖𝑞𝑡 + 𝑞𝑥𝑦 − 𝑣𝑞 = 0,, (1) 

𝑣𝑥 + 2(|𝑞|2)𝑦 = 0   (2) 

is a typical soliton equation with rich physical and mathematical applications [15-19]. This 

equation was proposed in [15] and was later deduced in [16], [17]. The conservation laws of 

equation (1)-(2) is studied in [18], rogue wave solutions are obtained by Hirota method in [19].  

In this work we study the system of  equations (1)-(2) by the sine-cosine method that have been 

extensively studied and widely applied for a wide variety of nonlinear problems [6-8].  

1.The scheme of sine-cosine method 

In this section, we describe the sine-cosine method [6]. According to the sine-cosine method by 

using a wave variable 

𝑢(𝑥, 𝑡) = 𝑢(𝑥 − 𝑐𝑡)                                                                                                      (3) 

the partial differential equation 
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𝐸1(𝑢𝑡, 𝑢𝑥 ,  𝑢𝑥𝑥 ,  𝑢𝑥𝑥𝑥 , … ) = 0,                                                                                             (4) 

can be converted to ordinary differential equation 

𝐸2(𝑢, 𝑢′, 𝑢", 𝑢′′′, … ) = 0.                                                                                                (5) 

Then the equation (5) is integrated as long as all terms contain derivatives where integration 

constants are considered zeros. The solutions of ordinary differential equation (5) can be expressed 

in the form 

𝑢(𝑥, 𝑡) = 𝜆𝑐𝑜𝑠𝛽(𝜇𝜉), |𝜉| ≤
𝜋

2𝜇
,                                                                               (6) 

or 

𝑢(𝑥, 𝑡) = 𝜆𝑠𝑖𝑛𝛽(𝜇𝜉), |𝜉| ≤
𝜋

𝜇
,                                                                                        (7) 

where the parameters λ, µ and β will be determined, and µ is wave number and c is wave speed 

respectively [6]. The derivatives of (6) become 

(𝑢𝑛)′ = −𝑛𝛽𝜇𝜆𝑛𝑐𝑜𝑠𝑛𝛽−1(𝜇𝜉) sin(𝜇𝜉),                                                                     (8) 

(𝑢𝑛)" = −𝑛2𝜇2𝛽2𝜆𝑛𝑐𝑜𝑠𝑛𝛽(𝜇𝜉) + 𝑛𝜇2𝜆𝑛𝛽(𝑛𝛽 − 1)𝑐𝑜𝑠𝑛𝛽−2(𝜇𝜉),                 (9) 

And the derivatives of (7) have next forms 

(𝑢𝑛)′ = −𝑛𝛽𝜇𝜆𝑛𝑠𝑖𝑛𝑛𝛽−1(𝜇𝜉) cos(𝜇𝜉),                                                                    (10) 

(𝑢𝑛)" = −𝑛2𝜇2𝛽2𝜆𝑛𝑠𝑖𝑛𝑛𝛽(𝜇𝜉) + 𝑛𝜇2𝜆𝑛𝛽(𝑛𝛽 − 1)𝑠𝑖𝑛𝑛𝛽−2(𝜇𝜉),                 (11) 

and so on for the other derivatives. Applying (6)-(11) into the reduced ordinary differential equation 

(5) we obtain a trigonometric equation of 𝑐𝑜𝑠𝛽(𝜇𝜉)or 𝑠𝑖𝑛𝛽(𝜇𝜉) terms. Then, we determine the 

parameters by first balancing the exponents of each pair of cosine or sine to determine 𝛽. Next, we 

collect all coefficients of the same power in 𝑐𝑜𝑠𝑘(𝜇𝜉)or 𝑠𝑖𝑛𝑘(𝜇𝜉), where these coefficients 

have to vanish. The system of algebraic equations among the unknown β, λ, and µ will be given and 

from that, we can determine coefficients. 

2. Using the sine–cosine method 

We consider the two-dimensional nonlinear Schrodinger equation (1)-(2). By transformation 

𝑞(𝑥, 𝑦, 𝑡) = 𝑒𝑖(𝑎𝑥+𝑏𝑦+𝑑𝑡)𝑄(𝑥, 𝑦, 𝑡),                                                                                         (12) 

the equation (1)-(2) can be converted to 

𝑖(𝑖𝑑𝑄 + 𝑄𝑡) + (−𝑏𝑎𝑄 + 𝑖𝑏𝑄𝑥 + 𝑖𝑎𝑄𝑦 + 𝑄𝑥𝑦) − 𝑣𝑄 = 0,                                                     (13) 

𝑣𝑥 + 2((𝑄)2)𝑦 = 0.                                                                                                                  (14) 

We separate real and imaginary part in the equation (13)-(14) and obtain 

−𝑑𝑄 − 𝑏𝑎𝑄 + 𝑄𝑥𝑦 − 𝑣𝑄 = 0,                                                                                                 (15) 

𝑖𝑄𝑡 + 𝑏𝑄𝑥 + 𝑎𝑄𝑦 = 0,                                                                                                             (16) 

𝑣𝑥 + 2(𝑄2)𝑦 = 0                                                                                                                      (17) 

Substituting the wave transformation 

𝑄(𝑥, 𝑦, 𝑡) = 𝑄(𝜉) = 𝑄(𝑥 + 𝑦 − 𝑐𝑡),                                                                                       (18) 

𝑣(𝑥, 𝑦, 𝑡) = 𝑉(𝜉) = 𝑄(𝑥 + 𝑦 − 𝑐𝑡),                                                                                        (19) 

into system of equation (15)-(17) we obtain that 

𝑄(−𝑑 − 𝑏𝑎) + 𝑄" − 𝑣𝑄 = 0,                                                                                                  (20) 

𝑄′(−𝑐 + 𝑏 + 𝑎) = 0,                                                                                                               (21) 

𝑉′ + 2(𝑄2)′ = 0.                                                                                                                      (22) 

From equation (21) we obtain that 𝑐 = 𝑏 + 𝑎. Than we integrate equation (22) and obtain  

𝑉 = −2𝑄2.                                                                                                                               (23) 

Substituting (23) into (20) we get  
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𝑄(−𝑑 − 𝑏𝑎) + 𝑄" + 2𝑄3 = 0.                                                                                                (24) 

We solve the equation (24) by the sine-cosine method. According to method the solution of the 

(24) can be found by transformation 

𝑄 = 𝜆𝑐𝑜𝑠𝛽(𝜇𝜉),                                                                                                                       (25) 

and 

𝑄 = 𝜆𝑠𝑖𝑛𝛽(𝜇𝜉).                                                                                                                       (26) 

To find cosine solution we use (25) and its derivative 

𝑄" = −𝜇2𝛽2𝜆𝑐𝑜𝑠𝛽(𝜇𝜉) + 𝜇2𝜆𝛽(𝛽 − 1)𝑐𝑜𝑠𝛽−2(𝜇𝜉).                                                            (27) 

Substitute (25) and (27) into (24)we get 

𝜆(−𝑑 − 𝑏𝑎)𝑐𝑜𝑠𝛽(𝜇𝜉) − 𝜇2𝛽2𝜆𝑐𝑜𝑠𝛽(𝜇𝜉) + 𝜇2𝜆𝛽(𝛽 − 1)𝑐𝑜𝑠𝛽−2(𝜇𝜉) + 2𝜆3𝑐𝑜𝑠3𝛽(𝜇𝜉) = 0.        (28) 

From (28) we find 𝛽: 

𝛽 − 2 = 3𝛽 then 𝛽 = −1.                                                                                                       (29) 

Substitute (29) in (28) we obtain next equation  

𝜆(−𝑑 − 𝑏𝑎)𝑐𝑜𝑠−1(𝜇𝜉) − 𝜇2𝜆𝑐𝑜𝑠−1(𝜇𝜉) + 2𝜇2𝜆𝑐𝑜𝑠−3(𝜇𝜉) + 2𝜆3𝑐𝑜𝑠−3(𝜇𝜉) = 0.            (30) 

From the equation (30) we have the next sytem 

𝑐𝑜𝑠−1(𝜇𝜉): 𝜆(−𝑑 − 𝑏𝑎) − 𝜇2𝜆 = 0,                                                                                       (31) 

𝑐𝑜𝑠−3(𝜇𝜉): 2𝜇2𝜆 + 2𝜆3 = 0.                                                                                                   (32) 

From (31) we obtain  

𝜇 = 𝑖√𝑑 + 𝑏𝑎,                                                                                                                          (33) 

and from (32) we get 

𝜆 = √𝑑 + 𝑏𝑎.                                                                                                                           (34) 

Substituting (33)-(34) into (25) and then obtained expression into (12) and (19) we have cosine 

solution 

𝑞1(x, y, t) = 𝑒𝑖(𝑎𝑥+𝑏𝑦+𝑑𝑡)√𝑑 + 𝑏𝑎 × 𝑐𝑜𝑠−1 (𝑖√𝑑 + 𝑏𝑎 × (𝑥 + 𝑦 − 𝑐𝑡)),                              (35) 

𝑣1(𝑥, 𝑦, 𝑡) = −2(𝑑 + 𝑏𝑎) × 𝑐𝑜𝑠−2 (𝑖√𝑑 + 𝑏𝑎 × (𝑥 + 𝑦 − 𝑐𝑡)),                                           (36) 

where 𝑐 = 𝑏 + 𝑎. 
By same way we can find sine solution 

𝑞2(x, y, t) = 𝑒𝑖(𝑎𝑥+𝑏𝑦+𝑑𝑡)√𝑑 + 𝑏𝑎 × 𝑠𝑖𝑛−1 (𝑖√𝑑 + 𝑏𝑎 × (𝑥 + 𝑦 − 𝑐𝑡)),                              (37) 

𝑣2(𝑥, 𝑦, 𝑡) = −2(𝑑 + 𝑏𝑎) × 𝑠𝑖𝑛−2 (𝑖√𝑑 + 𝑏𝑎 × (𝑥 + 𝑦 − 𝑐𝑡)),                                           (38) 

where 𝑐 = 𝑏 + 𝑎. 
2D-graphs and 3D-graphs formsof the obtained solutions are presented in next Fig.1-6. 

 

 
 

Fig.1. The 3D-graphs of the solution 𝑞1 when 𝑎 = 1, 𝑏 = 1, 𝑑 = 2 
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Fig. 2. The 3D-graphs of the solution 𝑣1 when 𝑎 = 1, 𝑏 = 1, 𝑑 = 2 

 

 
 

Fig.3. The 3D-graphs of the solution 𝑞2 when 𝑎 = 1, 𝑏 = 1, 𝑑 = 2 

 

 
 

Fig. 4. The 3D-graphs of the solution 𝑣2 when 𝑎 = 1, 𝑏 = 1, 𝑑 = 2 
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Fig. 5. The 2D-graphs of the solutions 𝑞1 (solid line),   𝑣1 (longdash line)  

with the parameters 𝑎 = 1, 𝑏 = 1, 𝑑 = 2 

 

 
Fig. 6. The 2D-graphs of the solutions 𝑞2  (solid line), 𝑣2 (longdash line)  

with the parameters 𝑎 = 1, 𝑏 = 1, 𝑑 = 2 

 

In Fig.1 - 4 we present 3D plots of the travelling wave solutions (35)-(38). It can be seen that 

the waves keep their directions, widths, and amplitudes invariant during the propagation on the x − 

y plane. 

Fig.5 displays the dynamics of the traveling wave in 2D plot. As we see the amplitude of 

solution 𝑣1(long dash line) bigger than the amplitude of solution 𝑞1(solid line).In Fig.6, we show 

the 2D-graphs for the solutions 𝑞2  (solid line) and  𝑣2 (long dash line) with the parameters t=0 and 

t=2. As we notice solutions (37)-(38) are traveling to the right by saving shape. 

Conclusion 

In this work, we investigated the two-dimensional nonlinear Schrodinger equation by applying 

the sine-cosine method. The nonlinear Schrodinger equation has many applications in different 

areas of physics. We constructed various exact traveling wave solutions for this equation. The 
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dynamics of the obtained traveling waves are shown in 2D-graphs and 3D-graphs forms. In figures, 

the traveling waves keep their directions, widths, and amplitudes invariant during the propagation. 

The sine-cosine method is a good mathematical tool for obtaining exact solutions for nonlinear 

wave equations in mathematical physics and other fields. 
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