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In the work of Shebzukhova and Arefieva, by the method of electronic-statistical calculation of the 

anisotropy of the surface energy of metals, a method for estimating the work function of electrons from a metal 

was determined. The surface energy and electron work function of four main faces of cadmium and zinc crystals 

and five faces of mercury are estimated. In the work of Bokarev, the anisotropy of the surface energy of single 

crystals was calculated from the model of coordination melting of crystals. Based on experimental studies and 

theoretical calculations, it is shown that the model of coordination melting of crystals unambiguously links the 

physicochemical properties of the surface of single crystals with their crystal structure. In our proposed empirical 

model, not only the anisotropy is calculated, but also the thickness of the surface layer of the metal. It is shown 

that the thickness of the surface layer is determined by one fundamental parameter - the molar (atomic) volume, 

which periodically changes in accordance with the table of D.I. Mendeleev. It is shown in the work that the work 

function of electrons changes proportionally with a change in the surface energy of the metal. This means that the 

device we have developed can be used to measure the state of the metal surface and its anisotropy. 
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Introduction 

This work is a continuation of works [1, 2], where it is shown that for the operational measurement of 

the energy state of the metal surface, it is necessary to use non-destructive testing methods. The method of 

measuring the contact potential difference (or the work function of an electron from the surface) was chosen 

as such a control. Here the measuring electrode of the device, at which the contact potential difference and 

the investigated metal surface are measured, form a kind of capacitor, between which this contact potential 

difference is formed. The positive aspect of the capacitor method for measuring the contact potential 

difference is: 

- high precision in capacitor manufacturing; 

- the capacitor in its normal state has low heat losses and a high efficiency; 

- electrical fields have little effect on the mechanical parts of the capacitor; 

- the sensor of the device can be made by giving it the shape of the investigated surface. 

The portable complex for measuring the work function of electrons developed by the authors on the 

basis of a portable digital oscilloscope makes it possible to perform non-destructive testing of the surface of 

metal parts in a continuous mode during their production, operation or repair. 

We used this complex to determine the surface energy of the surface of pure metals and alloys that are 

used in aviation. This work is of a theoretical nature and is devoted to the surface of body-centered cubic 

crystal lattices. 

1. Analysis of publications 

First of all, we will note only those publications that concern the anisotropy of the metal surface, to 

which we will devote our presentation. A significant number of works have been devoted to the anisotropy 

of surface energy and the work function of electrons from metals, since it must be taken into account in 

solving practical problems faced by both technicians and technologists. 

For example, in the microelectronic industry materials with design standards of 16-14 nm are already 

being used, and technologies with design standards at the level of 10-7 nm are being mastered. However, such 

a transition to the nanoscale requires a transition to work with new materials. In this case, the quantities of 
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the above-mentioned regions determine their size dependence and the surface energy of the crystal and its 

anisotropy have a significant dependence on the properties of materials. 

In works [3, 4], by the method of electron-statistical calculation of the surface energy of metals, a 

method was determined for the work function of electrons from a metal with structures having hexagonal 

and rhombic syngony. The relationship between the surface energy and the work function of the electron is 

obtained. These calculations were performed for crystals of zinc, cadmium, and mercury. The formula for the 

work function of an electron φ(hkl) and surface energy fω(hkl) of close-packed faces of metallic 

macrocrystals with noncubic structures is as follows [3]: 
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Here, the first term is a certain constant, independent of the indices of the crystallographic faces, the 

second determines the orientational dependence of the work function of electrons, which can be determined 

using Thomas – Fermi expressions for the variation of the electron density at the metal – vacuum interface 

with corrections [4]: 
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In formulas (1) and (2), a is the crystal lattice parameter, z is the number of free electrons per atom, Q is 

a function that weakly depends on z, |W(r0)| is the bond energy of the crystal lattice, n(hkl) is the 

concentration of particles on the face. The summation in (2) for each face was carried out up to the j-th 

plane, at which the contribution to the surface energy was≤0.1 mJ/m2.  

With the effective thickness of the monatomic surface layer τ=R (where R is the radius of the s-sphere) 

and bearing in mind (2), we obtain [3, 4]: 
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The constant B depends on the type of lattice structure of the metal and in the first approximation for 

hcp crystals is 3.51, and for crystalline mercury with a rhombohedral lattice 5.846. Expression (3) conveys 

well the anisotropy φ(hkl) of metals. To estimate the anisotropy of the work function of electrons, formula 

(3) is reduced to the form [3, 4]: 
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Here φ0 = const = φ + B/z a2 fω, f0 = φ0z/Ba2, φ is the Richardson work function of electrons from the 

polycrystalline sample, fω is the surface tension of the liquid metal at the melting temperature Tm, fTω(hkl) is 

the surface energy of the faces at a given temperature. Using expressions (2) and (4), the surface energy and 

work function of electronically four main faces of cadmium and zinc crystals and five faces of mercury were 

estimated. Thus, for zinc, the deviation of the calculated value of φ (0001) at 293 K from φexp (0001) and 

from the value for a polycrystal is 7.94 and 7.59 %, respectively. And for cadmium, the calculation error in 

comparison with the work function of electrons of the polycrystal is only 5.3%. In view of the absence in 

most cases and the ambiguity of the available experimental data on the surface energies of the faces of single 

crystals with noncubic structures, thin films and nanoparticles of the considered metals, expressions (3) and 

(4) can be used to estimate the surface energies of metal surfaces at the interface with vacuum from the work 

function data electrons of these surfaces. 

In [5, 6], the relationship between the anisotropy of the surface energy of single crystals and the crystal 

structure is considered. Based on experimental studies and theoretical calculations, it is shown that the model 

of coordination melting of crystals (MCP) unambiguously links the physicochemical properties of the 

surface of single crystals with their crystal structure. The calculations of the surface energy will be carried 

out according to the formula derived under the assumption that there are no first-order phase transitions in 

these substances up to their melting point [5, 6]: 
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where ρ is the density of the crystalline substance, and M is its molecular weight, Tm is the melting point, cp 

is the molar heat capacity, [hkl] is the thickness of the first coordination sphere in the [hkl] direction, which 

for crystals with body-centered (bcc) and face-centered (fcc) ) cubic structure is given by the relations [6]: 
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We take the values of ρ, М, Тm and cp for metals from the reference book [7]. Table 1 shows the 

calculations of the surface energy anisotropy by the MCP in comparison with the calculations of the surface 

energy anisotropy and the electron work function by several theoretical models [2–4]. 

 
Table 1. Anisotropy of the surface energy of metals, calculated from the MCP in comparison with the anisotropy 

of the surface energy and the work function of the electron, known from the literature 

 
Ме (hkl) 

 

Structure σhkl  

by MCP, 

mJ/m2 [6] 

σhkl 

[10], 

mJ/m2 

σhkl [8], 

mJ/m2 

 

Fhkl, eV 

[10] 

 

Fhkl, eV [8] Fhkl, eV [9] 

 

Li 

100  

Im3m 

304 436 541 3.15 2.968 2.28 

110 430 458 585 3.33 3.221 2.82 

111 180 - 601 - 2.746 2.11 

 

Na 

100  

Im3m 

189 236 258 2.76 2.638 2.28 

110 267 307 247 2.94 2.839 2.82 

111 109 - 302 - 2.585 2.11 

 

K 

100  

Im3m 

124 129 148 2.34 2.224 2.25 

110 175.3 116 137 2.38 2.372 2.79 

111 71.6 112 165 2.41 2.18 2.08 

 

Rb 

100  

Im3m 

101 107 126 2.22 2.116 2.16 

110 143 92 110 2.32 2.243 2.68 

111 58.4 89 135 2.29 2.096 2.00 

 

Cs 

100  

Im3m 

85 92 114 2.03 1.974 1.87 

110 120 72 97 2.09 2.073 2.34 

111 49 70 119 2.10 1.971 1.72 

 

As can be seen from Table 2, the calculated values of the work function of different crystal faces are 

proportional to the surface energies of these faces, calculated using the model of coordination crystal 

melting.  The main goal of this work is to build a model of the surface layer of perfect single crystals and to 

clarify the role of surface energy in physical processes occurring in the nanoscale range. 

 
Table 2. Anisotropy of the surface energy of metals calculated by (13) in comparison with the anisotropy of the 

surface energy and the work function of the electron 

 

Ме (hkl) 

 

Structure Tm, K R(I), nm σhkl 

by (13), mJ/m2 

σhkl by MCP, 

mJ/m2 [6] 

σhkl 

[10], mJ/m2 

Fhkl, eV 

[8] 

 

Li 

100  

Im3m 

 

454 

 

3.14 

(9) 

454 (9) 304 436 2.968 

110 636 (13) 430 458 3.221 

111 259 (5) 180 - 2.746 

 

Na 

100  

Im3m 

 

371 

 

 

5.7 

(13) 

371 (13) 189 236 2.638 

110 519 (18) 267 307 2.839 

111 212 (7) 109 - 2.585 

 

K 

100  

Im3m 

 

337 

 

 

10.9 

(20) 

337 (20) 124 129 2.224 

110 472 (28) 175.3 116 2.372 

111 193 (11) 71.6 112 2.18 

 

Rb 

100  

Im3m 

 

312 

 

 

13.4 

(24) 

312 (24) 101 107 2.116 

110 437 (34) 143 92 2.243 

111 178 (14) 58.4 89 2.096 

 

Cs 

100  

Im3m 

 

302 

 

 

16.8 

(27) 

302 (27) 85 92 1.974 

110 423 (38) 120 72 2.073 

111 173 (15) 49 70 1.971 
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2. Description of the empirical model 

In [11], when considering the melting temperature of small particles, we obtained the equation: 
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where the parameter R(I) is determined by the expression: 
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where σ - surface tension, υ - molar volume, R - universal gas constant, Т - temperature. 

Experimental studies carried out by us with physical objects on thin films of various nature: 

mechanical, optical, magnetic, as well as the results of other researchers, have shown the size dependence of 

all physical properties of small particles and thin films. This dependency looks like this: 
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where A(r) is a physical property (mechanical, etc.) that depends on the linear size (dimensional effect), A0 is 

a physical property (volumetric) that does not depend on size. 

It is clear that the surface of a solid is a nanostructure. The same is true for liquid. Equations (7), (8), 

and (9) have the same structure and diverge as r → 0; therefore, we will redefine equation (9) and write 

down finally: 
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This model is shown schematically in Figure 1. It is an ideal atomically smooth single crystal without 

vacancies, dislocations, and other defects.  

The de Broglie layer R0 = λdB = ћ/p for metals ranges from 0.01 nm to 0.1 nm. Quantum dimensional 

effects begin in this layer. The main quantum-dimensional structures include structures with a two-

dimensional electron gas - epitaxial films, MIS structures, heterostructures, etc .; structures with one-

dimensional gas - quantum threads or wires; structures with a zero-dimensional gas - quantum dots, boxes, 

crystallites [12]. 

 

 

Fig.1. Schematic representation of the surface layer.  

Designations: R0 - de Broglie layer; R1 - layer R(I); R2 is the R(II) layer; R∞ - solid sample layer. 

 

The R(I) layer is described by the first dependence from equation (9) (r >> R(I)). In the R(I) layer with 

pure metal atoms, there is a reconstruction and relaxation associated with the rearrangement of the surface 

[13]. For gold, the lattice constant is equal to R(I) = 0.41 nm and the surface is rearranged at a distance 
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R(I)Au = 1.2/0.41≈3 of three atomic monolayers. Size effects in the R(I) layer are determined by the entire 

group of atoms in the system (collective processes). Such “semiclassical” size effects are observed only in 

nanoparticles and nanostructures [14]. Experimentally, they can be observed on very pure single crystals 

with grazing incidence of X-ray radiation, when the angle of incidence is equal to or less than the critical 

angle of total internal reflection [15]. When the angle of incidence becomes less than the critical one, the 

refracted wave exponentially decays in the volume at a characteristic depth of the order of several 

nanometers (for example, this depth is 3.2 nm for silicon, and 1.2 nm for gold). As a result, a so-called 

vanishing wave is formed, which propagates parallel to the surface. Therefore, the diffraction of such waves 

provides information on the structure of the surface layer [13]. 

The R(II) layer extends approximately to the size R(II) ≈ 9R = R∞, where the bulk phase begins. 

Dimensional properties begin from this size. By nanomaterials it is customary to understand materials, the 

main structural elements of which do not exceed the nanotechnological boundary ~ 100 nm, at least in one 

direction [14-18]. A number of researchers are of the opinion that the upper limit (maximum size of 

elements) for nanostructures should be related to some critical characteristic parameter: the mean free path of 

carriers in transport phenomena, the size of domains/domain walls, the Frank-Read loop diameter for 

dislocation slip and the like. This means that the R (II) layer should contain many dimensional effects 

associated with optics, magnetism, and other physical properties according to Eq. (10). 

The R(II) layer is described by the second dependence from equation (10) (R0 <r <R(I)). The parameter 

R(I) is related to the surface tension σ by formula (7). In [11], it is shown that, with an accuracy of 3%, the 

relation: 

,10 m

3 T 
.                                                                                                                                        (11) 

where Tm is the melting point of the solid (K). The ratio is fulfilled for all metals and for other crystalline 

compounds. At T = Tm, from equation (8) we obtain: 

 9

Ì 1024.0R(I) .                                                                                                                            

(12) 

Equation (12) shows that the thickness of the surface layer R(I) is determined by one fundamental 

parameter - the molar (atomic) volume of the element υ = M/ρ, M is the molar mass (g / mol), ρ is the 

density (g/cm3), which changes periodically in accordance with the table of D.I. Mendeleev. Equation (11) 

can be empirically rewritten as: 

),hkl(l10)hkl( m

3   T .                                                                                                                   (13) 

where l(hkl) for crystals with body-centered (bcc) and face-centered (fcc) cubic structures is given by 

relations (6) at a = 1. 

Let's make calculations according to (12) and (13), taking reference data on Tm, M, ρ. 

3. Research results and discussion 

Table 2 shows that our empirical model, based on the results of calculations, does not differ much from 

the method of electron-statistical calculation of the surface energy of metals [3, 4] and from the model of 

coordination melting of crystals [5, 6]. However, in contrast to these models, our model gives a numerical 

value for the thickness of the surface layer and, perhaps, this is the first time. The thickness of the surface 

layer for the Li → Cs system ranges from 3 nm to 17 nm. If we recalculate it in lattice constants a, then it 

turns out that the surface layer contains on average 9 monolayers (Li) to 27 monolayers (Cs). 

Experimentally, such surface layers can be determined by methods of scattering X-rays during their internal 

reflection. Using this method, the thickness of the surface layer was determined for gold single crystals (R(I) 

= 1.2 nm) and for silicon (R(I) = 3.1 nm) [13], that is, this R(I) layer is a nanostructure ( fig. 1). Let us now 

consider the system of atoms Li → Cs. Consider a body-centered cubic lattice (BCC) (Fig. 2). 

Figure 2 shows that the shift in the crystal occurs most easily along the atomic planes with the densest 

packing of atoms (Fig. 2, a). Plane ABCD (Fig. 2, b), the number of atoms in the plane ABCD - 1; area 

ABCD = a2; area per 1 atom — specific area: S = a2/1 = a2 — measure of packing density. Plane ABGH (Fig. 

2, c), the number of atoms in the plane ABGH - 2; area ABGH = a2√2; S = a2√2/2≈0.7а2 <a. 

Since the physical and chemical properties along different directions depend on the density of atoms on 

them, the listed properties along different directions in crystalline bodies should be unequal (Fig. 3). 
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а) b) с) 

Fig.2. Volume-centric cubic lattice:  а) unit cell of the bcc lattice; b) plane ABCD. The number of atoms in the plane 

ABCD – 1; c) plane ABGH. Number of atoms in the plane ABGH - 2 

 

 

 

 
Fig.3. Crystallographic directions and planes in the crystal lattice: a) - the main directions and their designation; 

b), c), d) -basic planes and their designation 

 

Table 2 shows that the body-centered cubic lattice Li → Cs in the (110) plane contains more atomic 

monolayers, and the (111) layer contains the smallest number of atomic monolayers. These layers are located 

in the R(I) layer (Fig. 1), where the relaxation or reconstruction of the single crystal surface occurs (Fig. 4) 

[13].  

 

 
 

Fig.4. Transformation of the metal surface: 

relaxation — upper layer (a, b); reconstruction - several layers (c, d)   

 

The relaxation of the surface is understood as the difference between the distances between the last 

crystallographic planes parallel to the plane of the interface with vacuum from the distances between the 

same planes in the volume (Fig. 4). The variety of cases when the atomic structure of the upper layer is 

modified is characterized by the term reconstruction (it is especially relevant for semiconductors). Relaxation 

is characteristic of metals. The same is expected for Li → Cs crystals, and from Table 2 it can be seen that 

the surface layer extends over several atomic monolayers (Fig. 4, right). On the whole, size effects are 

observed up to distances R(II) ≈9R = R∞, where the bulk phase begins (Fig. 1), which, starting with 

potassium, exceeds the limit of 100 nm, which is characteristic of Slater nanostructures [19]. Table 2 shows 
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that the work function of electrons changes proportionally with a change in the surface energy of the metal. 

This means that the device developed by us [1, 2] can be used to measure the state of the metal surface and 

its anisotropy. 

Conclusion 

The anisotropy of the surface of its metals, even of atomically smooth surfaces, began to be developed 

relatively recently. First, this is due to an incomplete understanding of the role that surface energy and its 

anisotropy play in nanostructures. Secondly, because of the difficulty of measuring it. Our proposed model 

gives a numerical value for the thickness of the surface layer and allows one to evaluate the physical 

processes that occur in nanostructures. The de Broglie layer R0 = λdB = ћ/p for metals ranges from 0.01 nm 

to 0.1 nm. Quantum dimensional effects begin in this layer. The main quantum-dimensional structures 

include structures with a two-dimensional electron gas - epitaxial films, MIS structures, heterostructures, 

etc.; structures with one-dimensional gas - quantum threads or wires; structures with zero-dimensional gas - 

quantum dots, boxes, crystallites. The R(I) layer is described by the first dependence from equation (9) (r >> 

R(I)). In the R(I) layer with pure metal atoms, there is a reconstruction and relaxation associated with the 

rearrangement of the surface. The R(II) layer extends approximately to the size R(II) ≈9R = R∞, where the 

bulk phase begins. Dimensional properties begin from this size. We have shown for the first time in the 

world that the thickness of the surface layer is determined by one fundamental parameter - the molar 

(atomic) volume of an element, which periodically changes in accordance with the table of D.I. Mendeleev. 
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