MODELING OF CONFORMATIONAL CHANGES OF POLYELECTROLYTES ON THE SURFACE OF A TRANSVERSELY POLARIZED METAL NANOWIRE IN AN EXTERNAL ELECTRIC FIELD

MODELING OF CONFORMATIONAL CHANGES OF POLYELECTROLYTES ON THE SURFACE OF A TRANSVERSELY POLARIZED METAL NANOWIRE IN AN EXTERNAL ELECTRIC FIELD

Authors

DOI:

https://doi.org/10.31489/2022No2/19-29

Keywords:

metal nanowire, polyelectrolyte, conformational changes, molecular dynamics

Abstract

Gold nanowires with polyelectrolytes adsorbed on their surface are widely used in various biomedical
research. In this work, for the first time, conformational changes in polyelectrolytes on the surface of a gold
nanowire transversely polarized in an external electric field were considered. The properties of a specially
created analytical model of conformational rearrangements of a Gaussian macromolecular chain adsorbed on the
surface of a cylindrical metal nanowire in an external electric field transverse to the axis of the nanowire were
investigated. Conformational changes of uniformly charged polypeptides on the surface of a transversely
polarized gold nanowire have been studied using molecular dynamics simulation. On the basis of the analytical
model and the results of molecular dynamics simulation, the spatial distributions of the density of polyelectrolyte
units on the surface of the nanowire were constructed. With an increase in the strength of the external electric
field, an asymmetric stretching of the polyelectrolyte fringe in the direction of the dipole moment of the
transversely polarized nanowire was observed.

Author Biographies

M.G. Kucherenko

Doctor of phys.-math. sciences, Professor, Director of the Laser and Information Biophysics Centre, Orenburg State University, Orenburg, Russia; Scopus Author ID: 7003581468, clibph@yandex.ru

N.Yu. Kruchinin

Candidate of phys.-math. sciences, Associate Professor, Department of radiophysics and electronics, Orenburg State University, Orenburg, Russia; Scopus Author ID: 35170029600, kruchinin_56@mail.ru

P. P. Neyasov

Leading Engineer, Department of the Physics and Methods of Teaching Physics, Orenburg State University, Orenburg, Russia; Scopus Author ID: 57222337052, nejapetr@yandex.ru

References

Pardehkhorram R., Alshawawreh F., Gonçales V.R., et al. Gooding. functionalized gold nanorod probes: a sophisticated design of SERS immunoassay for biodetection in complex media. Anal. Chem., 2021, Vol. 93, pp. 12954-12965. https://doi.org/10.1021/acs.analchem.1c02557.

Sankari S.S., Dahms H., Tsai M., et al. Comparative study of an antimicrobial peptide and a neuropeptide conjugated with gold nanorods for the targeted photothermal killing of bacteria. Colloids and Surfaces B: Biointerfaces, 2021, Vol. 208, pp. 112117. https://doi.org/10.1016/j.colsurfb.2021.112117.

Ferhan A.R., Hwang Y., Ibrahim M.S.B., et al. Ultrahigh surface sensitivity of deposited gold nanorod arrays for nanoplasmonic biosensing. Applied Materials Today, 2021, Vol. 23, pp. 101046. https://doi.org/10.1016/j.apmt.2021.101046.

Nguyen V., Li Y., Henry J., et al. Gold nanorod enhanced photoacoustic microscopy and optical coherence tomography of choroidal neovascularization. ACS Appl. Mater. Interfaces, 2021, Vol. 13, pp. 40214-10228. https://doi.org/10.1021/acsami.1c03504.

Sheng G., Ni J., Xing K., et al. Infection microenvironment-responsive multifunctional peptide coated gold nanorods for bimodal antibacterial applications. Colloid and Interface Science Communications, 2021, Vol. 41, pp. 100379. https://doi.org/10.1016/j.colcom.2021.100379.

Creyer M.N., Jin Z., Moore C., et al. Modulation of gold nanorod growth via the proteolysis of dithiol peptides for enzymatic biomarker detection. ACS Appl. Mater. Interfaces, 2021, Vol. 13, pp. 45236-45243. https://doi.org/10.1021/acsami.1c11620.

Dong X., Ye J., Chen Y., et al. Intelligent peptide-nanorods against drug-resistant bacterial infection and promote wound healing by mild-temperature photothermal therapy. Chemical Engineering Journal, 2022, Vol. 432, pp. 134061. https://doi.org/10.1016/j.cej.2021.134061.

Kyaw H.H., Boonruang S., Mohammed W.S., Dutta J. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water. AIP Advances, 2015, Vol. 5, pp. 107226. https://doi.org/10.1063/1.4934934.

Chen Y., Cruz-Chu E.R., Woodard J., et al. Electrically induced conformational change of peptides on metallic nanosurfaces. ACS Nano, 2012, Vol. 6, pp. 8847-8856. https://doi.org/10.1021/nn3027408.

Bekardb I., Dunstan D.E. Electric field induced changes in protein conformation. Soft Matter, 2014, Vol.10, pp. 431-437. https://doi.org/10.1039/C3SM52653D.

Wu X., Liu Z., Zhu W. External electric field induced conformational changes as a buffer to increase the stability of CL-20/HMX cocrystal and its pure components. Materials Today Communications, 2021, Vol. 26, pp. 101696. https://doi.org/10.1016/j.mtcomm.2020.101696.

Mayya K.S., Schoeler B., Caruso F. Preparation and organization of nanoscale polyelectrolyte‐coated gold nanoparticles. Advanced Functional Materials, 2003, Vol. 13: pp. 183-188. https://doi.org/10.1002/adfm.200390028.

Dobrynin A.V., Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. Progress in Polymer Science, 2005, Vol. 30, pp. 1049-1118. https://doi.org/10.1016/j.progpolymsci.2005.07.006.

Chong G., Hernandez R. Adsorption dynamics and structure of polycations on citrate-coated gold nanoparticles. The Journal of Physical Chemistry C, 2018, Vol. 122, 19962-19969. https://doi.org/10.1021/acs.jpcc.8b05202.

Kruchinin N.Yu., Kucherenko M.G. Conformational rearrangements of polyampholytic polypeptides on metal nanoparticle surface in microwave electric field: molecular-dynamics simulation. Colloid Journal, 2020, Vol. 82, pp. 392-402. https://doi.org/10.1134/S1061933X20040067.

Kruchinin N.Yu., Kucherenko M.G., Neyasov P.P. Conformational changes of uniformly charged polyelectrolyte chains on the surface of a polarized gold nanoparticle: molecular dynamics simulation and the theory of a Gaussian chain in a field Russian Journal of Physical Chemistry A, 2021, Vol. 95, pp. 362-371. https://doi.org/10.1134/S003602442102014X.

Kruchinin N.Yu. Molecular dynamics simulation of uniformly charged polypeptides on the surface of a charged metal nanoparticle in an alternating electric Field Colloid Journal, 2021, Vol. 83, pp. 326-334. https://doi.org/10.1134/S1061933X2102006X.

Kruchinin N.Yu., Kucherenko M.G. Rearrangements in the conformational structure of polypeptides on the surface of a metal nanowire in rotating electric field: molecular dynamics simulation Colloid Journal, 2021, Vol. 83, pp. 79-87. https://doi.org/10.1134/S1061933X20060083.

Kruchinin N.Yu., Kucherenko M.G. Rearrangement of the conformational structure of polyampholytes on the surface of a metal nanowire in a transverse microwave electric field. Eurasian Physical Technical Journal, 2021, Vol.18, pp. 16-28. doi:10.31489/2021No1/16-28.

Kruchinin N.Yu., Kucherenko M.G. Rearrangements in the conformational structure of polyampholytic polypeptides on the surface of a uniformly charged and polarized nanowire: Molecular dynamics simulation. Surfaces and Interfaces, 2021, Vol. 27, pp. 101517. https://doi.org/10.1016/j.surfin.2021.101517.

Kruchinin N.Yu., Kucherenko M.G. Molecular dynamics simulation of conformational rearrangements in polyelectrolyte macromolecules on the surface of a charged or polarized prolate spheroidal metal nanoparticle. Colloid Journal, 2021, Vol. 83, pp. 591-604. https://doi.org/10.1134/S1061933X21050070

Kruchinin N.Yu., Kucherenko M.G. Modeling the conformational rearrangement of polyampholytes on the surface of a prolate spheroidal metal nanoparticle in alternating electric field. High Energy Chemistry, 2021, Vol. 55, pp. 442-453. https://doi.org/10.1134/S0018143921060084.

Kruchinin N.Yu., Kucherenko M.G. Molecular dynamics simulation of the conformational structure of uniform polypeptides on the surface of a polarized metal prolate nanospheroid with varying pH. Russian Journal of Physical Chemistry A, 2022, Vol. 96, pp. 624-632. https://doi.org/10.1134/S0036024422030141.

Novotny L., Hecht B. Principles of nanooptics. 2006, Cambridge: Cambridge University Press. 564p.

Grosberg A.Y., Khokhlov A.R. Statistical Physics of Macromolecules. 1994, AIP Press, New York. 347p

Phillips J.C., Braun R., Wang W., et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005, Vol. 26, pp. 1781-1802. https://doi.org/10.1002/jcc.20289.

MacKerell A.D. Jr., Bashford D., Bellott M., et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins J. Phys. Chem. B. 1998, Vol. 102, pp. 3586-3616. https://doi.org/10.1021/jp973084f.

Heinz H., Vaia R.A., Farmer B.L., Naik R.R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12−6 and 9−6 Lennard-Jones potentials. J. Phys. Chem. C. 2008, Vol. 112, pp. 17281-17290. https://doi.org/10.1021/jp801931d.

Darden T., York D., Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems J. Chem. Phys. 1993, Vol. 98, pp. 10089-10092. https://doi.org/10.1063/1.464397.

Jorgensen W.L., Chandrasekhar J., Madura J.D., et al. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, Vol. 79, pp. 926-935. https://doi.org/10.1063/1.445869.

Landau L.D., Pitaevskii L.P., Lifshitz E.M. Electrodynamics of Continuous Media, 2nd Edition, Elsevier Ltd., 1984, 460 p.

Downloads

How to Cite

Kucherenko, M., Kruchinin, N., & Neyasov, P. P. (2022). MODELING OF CONFORMATIONAL CHANGES OF POLYELECTROLYTES ON THE SURFACE OF A TRANSVERSELY POLARIZED METAL NANOWIRE IN AN EXTERNAL ELECTRIC FIELD. Eurasian Physical Technical Journal, 19(2(40), 19–29. https://doi.org/10.31489/2022No2/19-29

Issue

Section

Materials science
Loading...