THERMOELECTRIC MONITORING OF THERMAL RESISTANCE IN ELECTRONIC SYSTEMS

THERMOELECTRIC MONITORING OF THERMAL RESISTANCE IN ELECTRONIC SYSTEMS

Authors

DOI:

https://doi.org/10.31489/2023No3/52-61

Keywords:

thermal interface, thermal resistance, thermoEMF, Seebeck effect, thermoelectric monitoring

Abstract

The article proposes to apply the method of thermoelectric testing to determine the thermophysical parameters of the thermal interface. A thermal interface is located between metal surfaces, between which, thermoelectromotive force occurs during heating at any stage of the device operation. The obtained graphs of the temperature difference dependence on the heating time, measured by thermocouples, and measured using thermoelectromotive force confirm the accuracy of the thermoelectric method of testing. Graphs visualize the heat transfer process with thermal resistance variation, temperature fluctuations and the resulting thermoelectromotive force. The proposed method makes it possible to monitor thermal resistance with an error of less than 8 %.

References

Liu Y., Li J. A protocol to further improve the thermal conductivity of silicone-matrix thermal interface material with nano-fillers. Thermochimica Acta, 2022, Vol. 708, pp. 179136. doi: 10.1016/j.tca.2021.179136

Swamy M.C.K., Satyanarayan. A Review of Performance and Characterization of Conventional and Promising Thermal Interface Materials for Electronic Package Applications. Journal of Electronic Materials, 2019, Vol. 48, pp. 7623–7634. doi: 10.1007/S11664-019-07623-7

Zhang Y., Ma J., Wei N., Yanga J., Pei Q.-X. Recent progress in the development of thermal interface materials: a review. Physical Chemistry Chemical Physics, 2021, Vol. 23, pp. 753-776. doi: 10.1039/d0cp05514j

Xing W., Xu Y., Song C., Deng T. Recent Advances in Thermal Interface Materials for Thermal Management of High-Power Electronics. Nanomaterials, 2022, Vol. 12, No.19, pp.3365. doi: 10.3390/nano12193365

Prasher R. Thermal Interface Materials: Historical Perspective, Status, and Future Directions, Proceedings of the IEEE, 2006, Vol. 94, No. 8, pp. 1571-1586. doi: 10.1109/JPROC.2006.879796

Esau D. Thermal Paste Application. SEMIKRON INTERNATIONAL GmbH. 2010, Rev. 7, 6 p.

Schulz M. Thermal Interface – An Inconvenient Truth. Article Bodo’s Power Systems, 2010, Vol. 6, pp. 1-4.

Chung, D.D.L. Thermal interface materials. Journal of Materials Engineering and Performance, 2001, Vol. 10, pp. 56–59. doi: 10.1361/105994901770345358

Becker G., Lee C., Lin Z. Thermal conductivity in advanced chips: Emerging generation of thermal greases offers advantages. Advanced Packaging, 2005, Vol. 14, No. 7, 14 p.

Roy C.K., Bhavnani S., Hamilton M.C., Johnson R.W., Knight R.W., Harris D.K. Thermal performance of low melting temperature alloys at the interface between dissimilar materials. Applied Thermal Engineering, 2016, Vol. 99, pp. 72-79. doi: 10.1016/j.applthermaleng.2016.01.036.

GOST 19783-74 Organo-silicon heat-conducting paste. Specifications. Date of introduction: 01.01.1975. Official publication Moscow: IPK Publishing House of Standards, 1996. 11 p. [in Russian]

Drexhage P., Beckedahl P. Thermal Paste Application. SEMIKRON INTERNATIONAL GmbH, 2018, Rev. 7, 24 p.

Freyberg M., Daucher C. Application of thermal paste for Power Modules without base plate. Semikron International GmbH, 1999, 9 p.

Shishkin R. Development of the production technology of a new highly effective thermal grease. The International Journal of Advanced Manufacturing Technology, 2023, Vol. 126, pp. 709-717. doi: 10.1007/s00170-023-11149-y

Guo X, Cheng S, Cai W, Zhang Y, Zhang X. A review of carbon-based thermal interface materials: mechanism, thermal measurements and thermal properties. Materials & Design, 2021, Vol. 209, pp. 109936. doi: 10.1016/j.matdes.2021.109936

Zhang Y., Ma J., Wei N., Yang J., Pei Q.X. Recent progress in the development of thermal interface materials: a review. Physical Chemistry Chemical Physics, 2021, Vol. 23, pp. 753–776. doi: 10.1039/d0cp05514j.

Sarvar F., Whalley D.C., Conway P.P. Thermal Interface Materials - A Review of the State of the Art. Proc. of the 1st Electronic System integration Technology Conference, 2006, pp. 1292-1302. doi: 10.1109/ESTC.2006.280178.

Otiaba K.C., Ekere N.N., Bhatti R.S., Mallik S., Alam M.O., Amalu E.H. Thermal interface materials for automotive electronic control unit: Trends, technology and R&D challenges. Microelectronics Reliability, 2011, Vol. 51, No. 12, pp. 2031-2043. doi: 10.1016/j.microrel.2011.05.001.

Smirnov V.I., Sergeev V.A., Gavrikov A.A., Shorin A.M. Modulation method for measuring thermal impedance components of semiconductor devices. Microelectronics Reliability, 2018, Vol. 80, pp. 205–212.

Smirnov V.I., Sergeev V.A., Gavrikov A.A., Shorin A.M. Thermal impedance meter for power MOSFET and IGBT transistors. Proceeding of the IEEE Transactions on Power Electronics, 2018. Vol. 33, No. 7, pp. 6211-6216.

Smirnov V.I., Sergeev V.A., Gavrikov A.A., Kulikov A.A., Shorin A.M. Comparative analysis of standard and modulation methods for measuring thermal resistance of power bipolar transistors. Journal of Radio Electronics, 2019, No. 1, pp. 1-14. [in Russian]

Smirnov V.I., Sergeev V.A., Gavrikov A.A., Kulikov A.A. The study of current localization in solar cells during the thermal resistance measurements. Moscow Workshop on Electronic and Networking Technologies 2020 – Proceedings, 2020, pp. 9067386.

Smirnov V.I., Sergeev V., Gavrikov A., Kulikov A. Measuring thermal resistance of gan hemts using modulation method. Proceeding of the IEEE Transactions on Electron Devices, 2020, Vol. 67, No. 10, pp. 4112-4117.

Abouellail A.A., Obach I.I., Soldatov A.A., Soldatov A.I. Surface inspection problems in thermoelectric testing. Proc. of the MATEC Web of Conferences, 2017, Vol. 102, pp. 01001. doi: 10.1051/matecconf/201710201001.

Soldatov A.I., Soldatov A.A., Sorokin P.V., Loginov E.L., Abouellail A.A., Kozhemyak O.A., Bortalevich S.I. Control system for device «thermotest». Proceeding of the Intern. Siberian Conf. on Control and Communications (SIBCON), 2016, pp. 1–5. doi: 10.1109/SIBCON.2016.7491869.

Carreon H., Nagy P.B., Blodgett M. Thermoelectric nondestructive evaluation of residual stress in shot-peened metals. AIP Conference Proceedings, 2002, Vol. 615, No. 1, pp. 1667–167. doi: 10.1063/1.1472993.

Carreon H., Nagy P.B., Blodgett M. Thermoelectric nondestructive evaluation of residual stress in shot-peened metals. Research in Nondestructive Evaluation, 2002, Vol. 14, pp. 59-80. doi: 10.1007/s00164-002-0001-x.

Anatychuk L.I. On the discovery of thermoelectricity by volta. Journal of thermoelectricity, 2004. No. 2. pp. 5–10.

Lasance C.J.M. The Seebeck Coefficient. Available at: https://www.electronics-cooling.com/2006/11/the-seebeck-coefficient/ (accessed 7 February 2023).

Vasil’ev, I.M., Soldatov, A.A., Dement’ev, A.A., Soldatov, A.I. Control of Quality of Applying Heat-Conducting Compound. Russian Journal of Nondestructive Testing, 2020, Vol. 56, No. 3, pp. 284–290. doi: 10.1134/S1061830920030110.

Vasiliev I.M., Soldatov A.I., Abouellail A.A., Kostina M.A., Soldatov A.A., Soldatov D.A., Bortalevich S. Thermoelectric Quality Control of the Application of Heat-Conducting Compound. Studies in Systems, Decision and Control, 2021, Vol. 351, рр. 59–68. doi: 10.1007/978-3-030-68103-6_6.

Vasiliev I.M., Soldatov, A.I., Dementiev, A.A., Soldatov A.A., Abouellail, A.A. Automatic device for testing thermal resistance with thermoelectric effect. Material Science Forum, 2020, No. 4, pp. 154–156. doi: 10.1088/1742-6596/1499/1/012047.

Hu J., Nagy P.B. On the role of interface imperfections in thermoelectric nondestructive materials characterization. Applied Physics Letters, 1998, Vol. 73, pp. 467-469. doi: http://dx.doi.org/10.1063/1.121902.

Soldatov, A.I., Soldatov A.A., Kostina M.A., Kozhemyak O.A. Experimental Studies of Thermoelectric Characteristics of Plastically Deformed Steels ST3, 08KP and 12H18N10T. Key Engineering Materials, 2016, Vol. 685, pp. 310–314. doi:10.4028/www.scientific.net/kem.685.310.

Soldatov A.I., Soldatov A.A., Sorokin P.V., Abouellail A.A., Obach I.I., Bortalevich V.Y., Shinyakov Y.A., Sukhorukov M.P. An experimental setup for studying electric characteristics of thermocouples. Proceeding of the Intern. Siberian Conf. on Control and Communications (SIBCON), 2017, pp. 1-4. doi: 10.1109/SIBCON.2017.7998534.

Downloads

Published

2023-06-09

How to Cite

Abouellail, A., Chang, . J., Soldatov А., Soldatov, A., Kostina, M., & Vasiliev, I. (2023). THERMOELECTRIC MONITORING OF THERMAL RESISTANCE IN ELECTRONIC SYSTEMS. Eurasian Physical Technical Journal, 20(3(45), 52–61. https://doi.org/10.31489/2023No3/52-61

Issue

Section

Engineering

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

Loading...