INVESTIGATION OF INTERMETALLIC GdFeAl TERNARY COMPOUND BY ELASTIC, THERMOPHYSICAL AND ULTRASONIC ANALYSIS

INVESTIGATION OF INTERMETALLIC GdFeAl TERNARY COMPOUND BY ELASTIC, THERMOPHYSICAL AND ULTRASONIC ANALYSIS

Authors

DOI:

https://doi.org/10.31489/2022No1/105-112

Keywords:

intermetallic ternary compound, elastic properties, mechanical properties, thermal conductivity, ultrasonic properties

Abstract

Higher order elastic constants were calculated of the intermetallic GdFeAl ternary compound using Lennard Jones potential approach. With the using of second order elastic constants (SOECs), other elastic moduli; shear modulus, bulk modulus, Young’s modulus, Pugh’s ratio, constants of elastic stiffness and Poisson’s ratio are estimated for mechanical and elastic characterization at room temperature. Born stability and Pugh's criteria are used to examine the nature and strength of the intermetallic ternary compound and found that it is mechanically stable compound. For the investigation of anisotropic behaviour and thermophysical properties, ultrasonic velocities and thermal relaxation time have been also calculated along with different orientations from the unique axis of the crystal. The temperature variation of ultrasonic velocities, Debye average velocity and thermal relaxation time along the z axis is evaluated using SOECs. The ultrasonic properties correlated with elastic, thermal and mechanical properties which is temperature dependent is also discussed. Ultrasonic attenuation was calculated at different temperatures due to phonon – phonon (p – p) interactions. The responsible reason of attenuation is p-p interactions; it was got that the thermal conductivity is a core contributor to the characteristic of ultrasonic attenuation as a role of temperature. GdFeAl ternary compound behave as its purest form at lower temperature and are more ductile demonstrated by the minimum attenuation.

References

"

Oboz M., Talik E. Properties of the GdTX (T=Mn, Fe, Ni, Pd, X= Al, In) and GdFe6Al intermetallics. J. Alloys Compd. 2011, Vol. 509, pp. 5441-5446.

Kastil J., Javorsky P., Kamarad J., et al. Magnetic and magnetocaloric properties of partially disordered RFeAl 9R= Gd, Tb) intermetallic. Intermetallics, 2014, Vol.54, pp.15-19.

Tishin A.M., Derkach A.V., Spichkin Y.I., et al. Magnetocaloric effect near a second order magnetic phase transition. J. Magnetism and Magnetic Materials. 2007, Vol. 310, pp.2800-2804.

Jarosz J., Talik E., Kusz J., et al. Crystallographic, electronic structure and magnetic properties of the GdTAl; T=Co, Ni and Cu ternary compounds. Magn. Mater. 2000, Vol.208, pp.169.

Dong Q.Y., Shen B.G., Chen, J., et al. Magnetic entropy change and refrigerant capacity in GdFeAl compound. J. Applied Physics. 2009, Vol.105, pp. 07A305.

Levin E.M., Pecharsky V.K., Gschneidner Jr K.A. Unusual magnetic behaviour in Gd5(Si1.5Ge2.5) and Gd5(Si2Ge2). Physical Review B. 2000, Vol.62, pp. R14625.

Talik E., Klimczak M. Giant magnetocaloric effect in Tb3Rh. J. Alloys Compd. 2009, Vol.486, pp. L30-L33.

Liu F.S., Wang Q.B., Ao W.Q., et al Magnetocaloric effect in high Ni content Ni52Mn48−xInx alloys under low field change. J. Magn. Magn. Mater. 2012, Vol.324, pp.514-518.

Dung N. H., Zhang L., Ou Z.Q., Brück E. From first-order magneto-elastic to magneto-structural transition in (Mn,Fe)1.95P0.50Si0.50 compounds. Appl. Phys. Lett. 2011, Vol.99, pp.092511.

Pecharsky A.O., Gschneidner Jr K.A., Pecharsky V.K., The giant magnetocaloric effect between 190 and 300 K in the Gd5SixGe4−x alloys for 1.4⩽x⩽2.2. J. Magn Magn Mater, 2003, Vol.267, pp.60-68.

Brück Ekkes. Developments in magnetocaloric refrigeration. Journal of Physics D: Applied Physics. 2005, Vol.38, No. 23, pp. R381.

Cam Thanh D.T., Brück E., Tegus O. Influence of Si and Ge on the magnetic phase transition and magnetocaloric properties of MnFe (P, Si, Ge). J. Magn. Magn. Mater. 2007, Vol.310, pp. e1012-e1014.

Talik E., Kusz J., Hofmeister W., Matlak M., Skutecka M., Klimczak M. Properties of the GdPdX (X = Al, Si, Ga, Ge, In, Sn) intermetallics. J. Alloys Comp. 2006, Vol.423, pp.47-51.

Pandey D.K., Yadawa P.K., Yadav R.R., Ultrasonic properties of hexagonal ZnS at nanoscale. Mater. Lett. 2007, Vol.61, pp.5194–5198.

Yadawa P.K. Ultrasonic characterization of ceramic material titanium diboride. Ceramics-Silikaty. 2011, Vol. 55, pp. 127-133.

Yadawa P.K. Non-destructive characterization of superionic conductor: lithium nitride. Material Science –Poland. 2014, Vol. 32 (4), pp. 626-632.

Hill R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 1952, Vol.A. 65, pp.349–354.

Turkdal N., Deligoz E., Ozisik H., Ozisik H.B. First-principles studies of the structural, elastic, and lattice dynamical properties of ZrMo2 and HfMo2. Ph Transit. 2017, Vol. 90, pp.598–609.

Weck P.F., Kim E., Tikare V., Mitchell J. A. Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory. Dalton Trans. 2015, Vol.44, pp.18769–18779.

Singh D., Pandey D.K., Yadawa P.K., Yadav A.K., Attenuation of ultrasonic waves in V, Nb and Ta at low temperatures. Cryogen. 2009, Vol.49, pp.12-16.

Singh S.P., Yadawa P.K., Dhawan P.K., et al. Effect of pressure and electrical resistivity on ultrasonic properties of MgB2 single crystal at low temperatures. Cryogenics. 2019, Vol.100, pp.105-108.

Singh D., Yadawa P. K., Sahu S.K. Effect of electrical resistivity on ultrasonic attenuation in NpTe. Cryogen. 2010, Vol.50, pp.476-479

Klimczak M., Talik E., Jarosz J., Mydlarz T. Properties of GdFeAl ternary compound in two crystallographic structures. Materials Science-Poland. 2008, Vol. 26, pp.4.

Kaštil J., Javorský P., Kamarád J., et al. Magnetic and magnetocaloric properties of partially disordered RFeAl (R = Gd, Tb) intermetallic. Intermetallic. 2014, Vol. 54, pp. 15.

Jaiswal A.K., Yadawa P.K., Yadav R.R. Ultrasonic wave propagation in ternary intermetallic CeCuGe compound. Ultrasonics. 2018, Vol. 89, pp.22-25.

Yadawa P.K. Computational Study of Ultrasonic Parameters of Hexagonal Close-Packed Transition Metals Fe, Co, and Ni. The Arabian Journal for Science and Engineerin. 2012, Vol.37, pp.255.

Rai S., Chaurasiya N., Yadawa P.K. Elastic, Mechanical and Thermophysical properties of Single-Phase Quaternary ScTiZrHf High-Entropy Alloy. Physics and Chemistry of Solid State. 2021, Vol.22, pp.670-680.

Turkdal N., Deligoz E., Ozisik H., Ozisik H. B. First-principles studies of the structural, elastic, and lattice dynamical properties of ZrMo2 and HfMo2. Ph. Transit. 2017, Vol. 90, pp. 598.

Yadav C. P., Pandey D. K., Singh D. Ultrasonic study of Laves phase compounds ScOs2 and YOs2. Indian J Phys. 2019, Vol.93, pp.1147–1153.

Yadav N., Singh S. P., Maddheshiya A. K., et al. Mechanical and thermophysical properties of high-temperature IrxRe1−x alloys. Phase Transitions. 2020, Vol.93, pp.883-894.

Singh S. P., Singh G., Verma A.K., et al. Ultrasonic wave propagation in thermoelectric ZrX2 (X= S, Se) compounds. Pramana - J. Phys. 2019, Vol.93, No. 5 pp.83-91.

"

Downloads

How to Cite

Yadawa, P., Rai, S., Chaurasiya, N., & Prajapati, A. (2022). INVESTIGATION OF INTERMETALLIC GdFeAl TERNARY COMPOUND BY ELASTIC, THERMOPHYSICAL AND ULTRASONIC ANALYSIS. Eurasian Physical Technical Journal, 19(1(39), 105–112. https://doi.org/10.31489/2022No1/105-112

Issue

Section

Physics and Astronomy
Loading...