Моделирование конформационных изменений полиэлектролитов на поверхности поперечно поляризованного во внешнем электрическом поле металлического нанопровода
DOI:
https://doi.org/10.31489/2022No2/19-29Ключевые слова:
металлический нанопровод, полиэлектролит, конформационные изменения, молекулярная динамикаАннотация
Золотые нанопровода с адсорбированными на их поверхности полиэлектролитами широко используются в различных биомедицинских исследованиях. В данной работе впервые рассмотрены конформационные изменения полиэлектролитов на поверхности золотого нанопровода, поперечно поляризованного во внешнем электрическом поле. Исследованы свойства специально созданной аналитической модели конформационных перестроек гауссовой макромолекулярной цепи, адсорбированной на поверхности цилиндрического металического нанопровода во внешнем электрическом поле, поперечном к оси нанопровода. С использованием метода молекулярной динамики исследованы конформационные изменения однородно заряженных полипептидов на поверхности поперечно поляризованного золотого нанопровода. На основе аналитической модели и результатов молекулярно-динамического моделирования построены пространственные распределения плотности звеньев полиэлектролита на поверхности нанопровода. При увеличении напряженности внешнего электрического поля наблюдалось асимметричное вытягивание полиэлектролитной опушки в направлении дипольного момента поперечно поляризованного нанопровода.
Библиографические ссылки
Pardehkhorram R., Alshawawreh F., Gonçales V.R., et al. Gooding. functionalized gold nanorod probes: a sophisticated design of SERS immunoassay for biodetection in complex media. Anal. Chem., 2021, Vol. 93, pp. 12954-12965. https://doi.org/10.1021/acs.analchem.1c02557.
Sankari S.S., Dahms H., Tsai M., et al. Comparative study of an antimicrobial peptide and a neuropeptide conjugated with gold nanorods for the targeted photothermal killing of bacteria. Colloids and Surfaces B: Biointerfaces, 2021, Vol. 208, pp. 112117. https://doi.org/10.1016/j.colsurfb.2021.112117.
Ferhan A.R., Hwang Y., Ibrahim M.S.B., et al. Ultrahigh surface sensitivity of deposited gold nanorod arrays for nanoplasmonic biosensing. Applied Materials Today, 2021, Vol. 23, pp. 101046. https://doi.org/10.1016/j.apmt.2021.101046.
Nguyen V., Li Y., Henry J., et al. Gold nanorod enhanced photoacoustic microscopy and optical coherence tomography of choroidal neovascularization. ACS Appl. Mater. Interfaces, 2021, Vol. 13, pp. 40214-10228. https://doi.org/10.1021/acsami.1c03504.
Sheng G., Ni J., Xing K., et al. Infection microenvironment-responsive multifunctional peptide coated gold nanorods for bimodal antibacterial applications. Colloid and Interface Science Communications, 2021, Vol. 41, pp. 100379. https://doi.org/10.1016/j.colcom.2021.100379.
Creyer M.N., Jin Z., Moore C., et al. Modulation of gold nanorod growth via the proteolysis of dithiol peptides for enzymatic biomarker detection. ACS Appl. Mater. Interfaces, 2021, Vol. 13, pp. 45236-45243. https://doi.org/10.1021/acsami.1c11620.
Dong X., Ye J., Chen Y., et al. Intelligent peptide-nanorods against drug-resistant bacterial infection and promote wound healing by mild-temperature photothermal therapy. Chemical Engineering Journal, 2022, Vol. 432, pp. 134061. https://doi.org/10.1016/j.cej.2021.134061.
Kyaw H.H., Boonruang S., Mohammed W.S., Dutta J. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water. AIP Advances, 2015, Vol. 5, pp. 107226. https://doi.org/10.1063/1.4934934.
Chen Y., Cruz-Chu E.R., Woodard J., et al. Electrically induced conformational change of peptides on metallic nanosurfaces. ACS Nano, 2012, Vol. 6, pp. 8847-8856. https://doi.org/10.1021/nn3027408.
Bekardb I., Dunstan D.E. Electric field induced changes in protein conformation. Soft Matter, 2014, Vol.10, pp. 431-437. https://doi.org/10.1039/C3SM52653D.
Wu X., Liu Z., Zhu W. External electric field induced conformational changes as a buffer to increase the stability of CL-20/HMX cocrystal and its pure components. Materials Today Communications, 2021, Vol. 26, pp. 101696. https://doi.org/10.1016/j.mtcomm.2020.101696.
Mayya K.S., Schoeler B., Caruso F. Preparation and organization of nanoscale polyelectrolyte‐coated gold nanoparticles. Advanced Functional Materials, 2003, Vol. 13: pp. 183-188. https://doi.org/10.1002/adfm.200390028.
Dobrynin A.V., Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. Progress in Polymer Science, 2005, Vol. 30, pp. 1049-1118. https://doi.org/10.1016/j.progpolymsci.2005.07.006.
Chong G., Hernandez R. Adsorption dynamics and structure of polycations on citrate-coated gold nanoparticles. The Journal of Physical Chemistry C, 2018, Vol. 122, 19962-19969. https://doi.org/10.1021/acs.jpcc.8b05202.
Kruchinin N.Yu., Kucherenko M.G. Conformational rearrangements of polyampholytic polypeptides on metal nanoparticle surface in microwave electric field: molecular-dynamics simulation. Colloid Journal, 2020, Vol. 82, pp. 392-402. https://doi.org/10.1134/S1061933X20040067.
Kruchinin N.Yu., Kucherenko M.G., Neyasov P.P. Conformational changes of uniformly charged polyelectrolyte chains on the surface of a polarized gold nanoparticle: molecular dynamics simulation and the theory of a Gaussian chain in a field Russian Journal of Physical Chemistry A, 2021, Vol. 95, pp. 362-371. https://doi.org/10.1134/S003602442102014X.
Kruchinin N.Yu. Molecular dynamics simulation of uniformly charged polypeptides on the surface of a charged metal nanoparticle in an alternating electric Field Colloid Journal, 2021, Vol. 83, pp. 326-334. https://doi.org/10.1134/S1061933X2102006X.
Kruchinin N.Yu., Kucherenko M.G. Rearrangements in the conformational structure of polypeptides on the surface of a metal nanowire in rotating electric field: molecular dynamics simulation Colloid Journal, 2021, Vol. 83, pp. 79-87. https://doi.org/10.1134/S1061933X20060083.
Kruchinin N.Yu., Kucherenko M.G. Rearrangement of the conformational structure of polyampholytes on the surface of a metal nanowire in a transverse microwave electric field. Eurasian Physical Technical Journal, 2021, Vol.18, pp. 16-28. doi:10.31489/2021No1/16-28.
Kruchinin N.Yu., Kucherenko M.G. Rearrangements in the conformational structure of polyampholytic polypeptides on the surface of a uniformly charged and polarized nanowire: Molecular dynamics simulation. Surfaces and Interfaces, 2021, Vol. 27, pp. 101517. https://doi.org/10.1016/j.surfin.2021.101517.
Kruchinin N.Yu., Kucherenko M.G. Molecular dynamics simulation of conformational rearrangements in polyelectrolyte macromolecules on the surface of a charged or polarized prolate spheroidal metal nanoparticle. Colloid Journal, 2021, Vol. 83, pp. 591-604. https://doi.org/10.1134/S1061933X21050070
Kruchinin N.Yu., Kucherenko M.G. Modeling the conformational rearrangement of polyampholytes on the surface of a prolate spheroidal metal nanoparticle in alternating electric field. High Energy Chemistry, 2021, Vol. 55, pp. 442-453. https://doi.org/10.1134/S0018143921060084.
Kruchinin N.Yu., Kucherenko M.G. Molecular dynamics simulation of the conformational structure of uniform polypeptides on the surface of a polarized metal prolate nanospheroid with varying pH. Russian Journal of Physical Chemistry A, 2022, Vol. 96, pp. 624-632. https://doi.org/10.1134/S0036024422030141.
Novotny L., Hecht B. Principles of nanooptics. 2006, Cambridge: Cambridge University Press. 564p.
Grosberg A.Y., Khokhlov A.R. Statistical Physics of Macromolecules. 1994, AIP Press, New York. 347p
Phillips J.C., Braun R., Wang W., et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005, Vol. 26, pp. 1781-1802. https://doi.org/10.1002/jcc.20289.
MacKerell A.D. Jr., Bashford D., Bellott M., et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins J. Phys. Chem. B. 1998, Vol. 102, pp. 3586-3616. https://doi.org/10.1021/jp973084f.
Heinz H., Vaia R.A., Farmer B.L., Naik R.R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12−6 and 9−6 Lennard-Jones potentials. J. Phys. Chem. C. 2008, Vol. 112, pp. 17281-17290. https://doi.org/10.1021/jp801931d.
Darden T., York D., Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems J. Chem. Phys. 1993, Vol. 98, pp. 10089-10092. https://doi.org/10.1063/1.464397.
Jorgensen W.L., Chandrasekhar J., Madura J.D., et al. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, Vol. 79, pp. 926-935. https://doi.org/10.1063/1.445869.
Landau L.D., Pitaevskii L.P., Lifshitz E.M. Electrodynamics of Continuous Media, 2nd Edition, Elsevier Ltd., 1984, 460 p.