Спектральные зависимости магнитооптических эффектов в магнитных жидкостях

Авторы

  • К.В. Ерин
  • В.И. Вивчарь
  • С.С. Белых

DOI:

https://doi.org/10.31489/2022No2/86-92

Ключевые слова:

магнитные жидкости, оптическая анизотропия, магнетит, комплексный показатель преломления

Аннотация

Исследованы спектральные зависимости эффектов пропускания и оптической анизотропии в магнитной жидкости. Показано, что известные спектры показателя преломления объемного магнетита малопригодны для количественной и качественной интерпретации оптических эффектов в магнитных жидкостях. Наилучшее согласие с экспериментом было получено при использовании экспериментальных спектров комплексного показателя преломления порошка наночастиц магнетита. Найдены существенные  различия спектров комплексного показателя преломления объемного и наноразмерного магнетита.

Биографии авторов

К.В. Ерин

Doctor of phys.-math. sciences, Professor, Department of Physics and Technology, North-Caucasus Federal University, Stavropol, Russian Federation; Scopus Author ID: 56305531700, ORCID ID: 0000-0002-2426-4225

В.И. Вивчарь

Post Graduate student, Department of Physics and Technology, North-Caucasus Federal University, Stavropol, Russian Federation

С.С. Белых

Master (Sci.), Engineer-physicist, Department of Physics and Technology, North-Caucasus Federal University, Stavropol, Russian Federation; Scopus Author ID: 57202009427, ORCID ID: 0000-0001-9133-0192

Библиографические ссылки

Zahn M. Magnetic fluid and nanoparticle applications to nanotechnology. J. Nanopart. Res., 2001, Vol. 3, pp. 73-78.

Odenbach S. Magnetic fluids. Adv. Coll. Int. Sci., 1993, Vol. 46, pp. 263-282.

Philip J., Laskar J.M. Optical Properties and Applications of Ferrofluids – A Review. J. Nanofluids, 2012, vol. 1, pp. 3-20.

Szczęch M. Theoretical analysis and experimental studies on torque friction in magnetic fluid seals. Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 2020, vol. 234(2), pp. 274-281.

Saga N., Nakamura T. Elucidation of propulsive force of microrobot using magnetic fluid. J. Appl. Phys., 2002, vol. 91, 7003.

Mahendran V., Philip J. Nanofluid based optical sensor for rapid visual inspection of defects in ferromagnetic materials. Appl. Phys. Lett., 2012, Vol. 100, 073104.

Hesselbach J., Abel-Keilhack C. Active hydrostatic bearing with magnetorheological fluid. J. Appl. Phys., 2003, Vol. 93, 8441.

Das P., Colombo M., Prosperi D. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids and Surfaces B: Biointerfaces., 2019, Vol. 174, pp. 42-55.

Davies H.W., Llewellyn J.P. Magneto-optic effects in ferrofluids. J. Phys. D: Appl. Phys., 1980, Vol. 13, pp. 2327-2336.

Llewellyn J.P. Form birefringence in ferrofluids. J. Phys. D: Appl. Phys., 1983, Vol. 16, pp. 95-104.

Jennings B.R., Xu M., Ridler P.J. Ferrofluid structures: a magnetic dichroism study. Proc. Royal Soc. A, 2000, Vol. 456, pp. 891-907.

Donatini F., Neveu S., Monin J. Measurements of longitudinal magneto-optic effects in ferrofluids: dynamical method. J. Magn. Magn. Mater., 1996, Vol. 162, pp. 69-74.

Yerin K.V., Kunikin S.A. Change in the intensity of light scattering in a magnetite colloid under the simultaneous action of electric and magnetic fields. Optics and Spectroscopy, 2007, Vol. 102, No 5, pp. 765-770.

Yerin C.V., Vivchar V.I. Ellipsometry of magnetic fluid in a magnetic field. J. Magn. Magn. Mater., 2020, Vol. 498, 166144.

Torres-Diaz I., Rinaldi C. Recent progress in ferrofluids research: Novel applications of magnetically controllable and tunable fluids. Soft Matter, 2014, Vol. 10, pp. 8584-8605.

Pandey B.K., Shahi A. K., Shah J., et al. Optical and magnetic properties of Fe2O3 nanoparticles synthesized by laser ablation/fragmentation tech-nique in different liquid media. Applied Surface Science, 2014. Vol. 289, pp. 462–471.

Donatini F., Jamon D., Monin J., Neveu S. Experimental Investigation of Lon-gitudinal Magneto-optic Effects in Four Ferrite Ferrofluids in Visible-Near Infrared Spectrum. IEEE Trans. Magn., 1999, Vol. 35, No. 5, pp. 4311–4317.

Yerin C.V., Lykhmanova V.I., Yerina M.V. Spectral dependences of the complex refractive index of concentrated magnetic fluids. Magnetohydrodynamics, 2018, Vol. 54, No. 1-2, pp. 155-159.

Bohren C.F., Huffman D. R. Absorption and Scattering of Light by Small Particles. Wiley, 2007, 530 p.

Yerin C., Vivchar V. Field dependence of magnetooptic effect in magnetic colloid with superparamagnetic particles. J. Phys.: Conference Series, 2019, Vol. 1389, Issue 1, 012055.

Queery M.R. Optical Constants, Contractor report, US Army Chemical Research, Development and Engineering Center (CRDC), Aberdeen, 1985. 418 p.

Buchenau U., Muller I. Optical properties of magnetite. Solid State Communication, 1972, Vol. 11, Issue 9, pp.1291-1293.

Dyakov S.A., Fradkin I.M., Gippius N.A., et al. Wide-band enhancement of the transverse magneto-optical Kerr effect in magnetite-based plasmonic crystals. Physical Review B., 2019, Vol. 100, pp.214411.

Kanyathare B., Peiponen K.E. Wavelength-dependent excess permittivity as indicator of kerosene in diesel oil. Applied Optics, 2018, Vol. 57, No. 12, pp. 2997-3002.

Загрузки

Как цитировать

Ерин C., Вивчарь V., & Белых S. (2022). Спектральные зависимости магнитооптических эффектов в магнитных жидкостях. Eurasian Physical Technical Journal, 19(2(40), 86–92. https://doi.org/10.31489/2022No2/86-92

Выпуск

Раздел

Физика и астрономия