Исследование влияния облучения тяжелыми ионами Xe22+ на механические свойства карбидных керамик
DOI:
https://doi.org/10.31489/2020No1/46-53Ключевые слова:
керамика, механические свойства, дефекты, карбид кремния, тяжелые ионы, искажение, деградация, радиационная стойкость.Аннотация
В работе представлены результаты исследования влияния облучения тяжелыми ионами Xe22+ с энергией 440 кэВ и флюенсами облучения 1014, 5x1014, 1015 ион/см2 на свойства керамик на основе карбида кремния (SiC). Выбор типа облучения и дозовой нагрузке обусловлен возможностью моделирования радиационных повреждений приповерхностного слоя толщиной 200 нм в результате эффекта перекрывания дефектных областей. Научная новизна полученных результатов заключается в систематических исследованиях устойчивости механических и прочностных свойств приповерхностного слоя карбидных керамик к радиационному повреждению. В ходе проведенных исследований установлено, что в случае облученных керамик глубина повреждений превышает расчетную длину пробега ионов на 20-30% в зависимости от флюенса облучения. Основным механизмом радиационных повреждений является увеличение дислокационной плотности дефектов и образованием областей разцпорядочения в случае больших доз. В результате моделирования процессов ускоренного старения установлено, что для облученных образцов снижение величины трещиностойкости не превышает 10 %. Проведенные исследования показывают высокие значения устойчивости керамик карбида кремния к радиационным повреждениям приповерхностного слоя.
Библиографические ссылки
"1 Guérin Y., Was G. S., Zinkle S. J. Materials challenges for advanced nuclear energy systems. Mrs Bulletin. 2009, Vol. 34, No.1, pp. 10 – 19.
Gladkikh T., et al. Changes in optical and structural properties of AlN after irradiation with C2+ ions of 40 keV. Vacuum. 2019, Vol. 161, pp. 103 – 110.
Kaliekperov M., et al. The study of changes in structural properties of Cu films under ionizing radiation. Materials Research Express. 2018, Vol. 5, No.5, pp. 055008.
Chroneos A. et al. Nuclear waste form materials: Atomistic simulation case studies. Journal of nuclear materials. 2013, Vol. 441, No. 1 – 3, pp. 29 – 39.
Ryskulov A.E., et al. The effect of Ni12+ heavy ion irradiation on the optical and structural properties of BeO ceramics . Ceramics International. 2020, Vol. 46, No. 4, pp. 4065 – 4070.
Zdorovets M. V., Kozlovskiy A. L. Study of the stability of the structural properties of CeO2 microparticles to helium irradiation. Surface and Coatings Technology. 2020, Vol. 383, pp. 125286.
Kozlovskiy A., et al. Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering. Vacuum. 2019, Vol. 164, pp. 224 – 232.
Raj B., Mudali U. K. Materials development and corrosion problems in nuclear fuel reprocessing plants. Progress in Nuclear Energy. 2006, Vol. 48, No. 4, pp. 283 – 313.
Dukenbayev K., et al. Investigation of radiation resistance of AlN ceramics. Vacuum. 2019, Vol. 159, pp. 144 – 151.
Kozlovskiy A. L., et al. Radiation resistance of thin TiN films as a result of irradiation with low-energy Kr14+ ions. Ceramics International. 2020, Vol. 46, No. 6, pp. 7970 – 7976.
Kozlovskiy A., et al. Optical and structural properties of AlN ceramics irradiated with heavy ions. Optical Materials. 2019, Vol. 91, pp. 130 – 137.
Féron D. Overview of nuclear materials and nuclear corrosion science and engineering. Nuclear Corrosion Science and Engineering. Woodhead Publishing, 2012, pp. 31 – 56.
Zdorovets M. V., Kurlov A. S., Kozlovskiy A. L. Radiation defects upon irradiation with Kr14+ ions of TaC0. 81 ceramics. Surface and Coatings Technology. 2020, Vol. 386, pp.125499.
Tinishbaeva K., et al. Implantation of low-energy Ni 12+ ions to change structural and strength characteristics of ceramics based on SiC. Journal of Materials Science: Materials in Electronics. 2020, Vol.31, No. 3, pp. 2246 – 2256.
Ferraris M., et al. Joining of SiC-based materials for nuclear energy applications. Journal of nuclear materials. 2011, Vol. 417, No. 1-3, pp. 379 – 382.
Le Brun C. Molten salts and nuclear energy production. Journal of nuclear materials. 2007, Vol.360, No. 1, pp. 1 – 5.
Kozlovskiy A., et al. Investigation of the influence of irradiation with Fe+ 7 ions on structural properties of AlN ceramics. Materials Research Express. 2018, Vol. 5, No. 6, pp. 065502.
Singh V.P., Badiger N. M. Gamma ray and neutron shielding properties of some alloy materials. Annals of Nuclear Energy. 2014, Vol. 64, pp. 301 – 310.
Zinkle S.J., Hodgson E. R. Radiation-induced changes in the physical properties of ceramic materials. Journal of nuclear materials. 1992, Vol. 191, pp. 58 – 66.
Zdorovets M.V., et al. Helium swelling in WO3 microcomposites. Ceramics International. 2020, Vol.46(8A), pp. 10521 . 10529.
Wray P. Materials for nuclear energy in the post-fukushima era. American Ceramics Society Bulletin. 2011, Vol. 90, No. 6, pp. 24 – 28.
Zdorovets M., et al. Defect formation in AlN after irradiation with He2+ ions. Ceramics International. 2019, Vol. 45, No. 7, pp. 8130 – 8137.
Weber W.J., et al. Materials science of high-level nuclear waste immobilization. MRS Bulletin. 2009, Vol. 34, No. 1, pp. 46 – 53.
Kozlovskiy A., et al. Influence of He-ion irradiation of ceramic AlN. Vacuum. 2019, Vol.163, pp. 45 – 51.
Trukhanov A.V., et al. Control of structural parameters and thermal conductivity of BeO ceramics using heavy ion irradiation and post-radiation annealing. Ceramics International. 2019, Vol. 45, No.12, pp.15412 – 15416.
Katoh Y., et al. Radiation effects in SiC for nuclear structural applications. Current Opinion in Solid State and Materials Science. 2012, Vol. 16, No.3, pp. 143 – 152.
Zhang Z. H. et al. Processing and characterization of fine-grained monolithic SiC ceramic synthesized by spark plasma sintering. Materials Science and Engineering: A. 2010, Vol. 527, No. 7 – 8, pp.2099 – 2103.
Li M. et al. The critical issues of SiC materials for future nuclear systems. Scripta Materialia. 2018, Vol. 143, pp. 149 – 153.
Katoh Y. et al. SiC/SiC composites through transient eutectic-phase route for fusion applications. Journal of Nuclear Materials. 2004, Vol. 329, pp. 587 – 591.
Naslain R. R. SiC-matrix composites: Nonbrittle ceramics for thermo-structural application. International Journal of Applied Ceramic Technology. 2005, Vol. 2, No. 2, pp. 75 – 84.
Uglov V. V., et al. Surface blistering in ZrSiN nanocomposite films irradiated with He ions. Surface and Coatings Technology. 2020, p. 125654.
Uglov V. V., et al. Size effect in AlN/SiN multilayered films irradiated with helium and argon ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2018, Vol. 435, pp. 228-235.
Chauhan V., Kumar R. Phase transformation and modifications in high-k ZrO2 nanocrystalline thin films by low energy Kr5+ ion beam irradiation. Materials Chemistry and Physics, 2020, Vol. 240, p. 122127.
Kumar V., Kumar R. Low energy Kr5+ ion beam engineering in the optical, structural, surface morphological and electrical properties of RF sputtered TiO2 thin films. Optical Materials, 2019, Vol.91, pp. 455-469.
"