Влияние кручения под высоким давлением на изменение микроструктуры микролегированной стали.
DOI:
https://doi.org/10.31489/2022No4/17-21Ключевые слова:
интенсивная пластическая деформация, микроструктура, кручение под высоким давлением, сталь, механические свойстваАннотация
Наиболее распространенным методом изготовления деталей является обработка металлов давлением, в результате которой не исчерпывается весь резерв прочности и пластичности материала. Поэтому вопросы влияния пластической деформации на циклическую долговечность и пределы выносливости поршневых колец являются актуальными. В данной статье проведены экспериментальные исследования влияния кручения под высоким давлением в штампе новой конструкции на эволюцию микроструктуры и изменение механических свойств. В результате доказана принципиальная возможность и эффективность использования предложенного метода для формирования ультрамелкозернистой структуры и повышения прочностных свойств стальных колец. Деформацию проводили при температуре окружающей среды в шесть проходов. В результате деформирования получена ультрамелкозернистая структура со средним размером зерна 0,5 μm с наличием большого количества большеугловых границ. Прочностные свойства ми1935 МПа после деформирования. При этом наибольший прирост прочностных свойств приходился на первые 3 цикла деформирования.
Библиографические ссылки
"1 Surzhikov A.P., Lysenko E.N., Malyshev A.V., Petrova A., Ghyngazov S.A., Aimukhanov A.K. Phase transformations in ferrites during radiation-thermal sintering. Eurasian phys. tech. j, 2020, Vol.17, No.1, pp. 144-153. doi:10.31489/2020No1/26-34
Alizadeh M., Samiei M. Fabrication of nanostructured Al/Cu/Mn metallic multilayer composites by accumulative roll bonding process and investigation of their mechanical properties. Materials & Design, 2014, Vol. 56, pp. 680–684. http://dx.doi.org/10.1016/j.matdes.2013.11.067
Valiev R.Z., Estrin Y., Horita Z., et al. Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM. 2016, Vol. 68, pp.1216-1226. doi:10.1007/s11837-006-0213-7
Kasenov B.K., Kasenova Sh.B., Sagintaeva Zh.I., et al. Synthesis and X-ray investigation of novel nanostructured copper-zinc manganites of lanthanum and alkali metals. Eurasian phys. tech. j., 2021, Vol. 18, No. 1, pp. 29-33. doi: 10.31489/2021No1/29-33
Lezhnev S., Panin E., Volokitina I. Research of combined process rolling-pressing influence on the microstructure and mechanical properties of aluminium. Advanced Materials Research, 2013, Vol.814, pp. 68-75. doi:10.4028/www.scientific.net/AMR.814.68
Furukawa M., HoritaZ., Langdon T.G. Application of equal-channel angular pressing to aluminum and copper single crystals. Materials Science Forum, 2007, Vols. 539-543, рр. 2853-2858. doi::10.4028/www.scientific.net/MSF.539-543.2853
Polyakov A.V., Semenova I.P., Raab G.I. Peculiarities of ultrafine-grained structure formation in Ti Grade-4 using ECAP-Conform. Advanced Materials Science, 2012, Vol.31, рр. 78-84.
Lezhnev S.N., Naizabekov A.B., Panin E., Volokitina I.E. Influence of combined process “rolling-pressing” on microstructure and mechanical properties of copper. Procedia Engineering, 2014, Vol.81, pp. 1499 – 1505. doi: 10.1016/j.proeng.2014.10.180
Naseri R., et al. An experimental investigation of casing effect on mechanical properties of billet in ECAP process. International Journal of Advanced Manufacturing Technology, 2017, Vol. 90, pp. 3203–3216. doi:10.1007/s00170-016-9658-1
Murashkin M.Yu., et al. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. J. Mater. Sci. 2013, Vol. 48, рр. 4501-4509. DOI:10.1007/s10853-013-7279-8
Xu C., Horita Z., Langdon T.G. The evolution of homogeneity in processing by high-pressure torsion. Acta Materialia, 2007, Vol.55, рр. 203-212. doi: 10.1016/j.actamat.2006.07.029
Raab G., Valiev R., Lowe Т., Zhu Y. Continuous processing of ultrafine grained A1 by ECAP-Conform. Mater. Sci. and Eng., 2004, Vol. 382, рр. 30–34. doi:10.1016/j.msea.2004.04.021
Dao M., Lu L., Asaro R., Hosson J., Ma E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Materialia, 2007, Vol. 55, рр. 4041-4065. doi:10.1016/J.ACTAMAT.2007.01.038
Lezhnev S., Volokitina I., Koinov T. Research of influence equal channel angular pressing on the microstructure of copper. Journal of Chemical Technology and Metallurgy, 2014, Vol. 49, рр. 621-630.
Chukin M.V., Polyakova M.A., Emaleeva D.G., Gulin A.E. Creating UltrafineGrain Structure in High Strength Bimetallic Steel–Copper Products. Steel in Translation, 2014, Vol. 44, No. 4, pp. 320–323.
Zhilyaev A., Langdon T. Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science, 2008, Vol. 53, pp. 893-979. doi:10.1016/J.PMATSCI.2008.03.002
Kawasaki M., Ahn B., Lee H.J., et al. Using high-pressure torsion to process an aluminum–magnesium nanocomposite through diffusion bonding. J. Mater. Res., 2015, Vol. 31, pp. 88-99. doi:10.1557/jmr.2015.257
Volokitina I.E., Volokitin A.V., Panin E.A., Latypova M.A., Kassymov S.S. Microstructure evolution of steel-aluminum wire during deformation by ""equal-channel angular press-ing-drawing"" method. Eurasian phys. tech. j., 2022, Vol.19, No.1, pp. 73-77. doi:10.31489/2022No1/73-77
Choi I., Schwaiger R., Kurmanaeva L., Kraft O. On the effect of Ag content on the deformation behavior of ultrafine-grained Pd-Ag alloys. Scripta Materialia, 2009, Vol.61, pp.64-67. doi:10.1016/j.scriptamat.2009.03.007
Horita Z., Fujinami T., Langdon T. The potential for scaling ECAP: Effect of sample size on grain refinement and mechanical properties. Materials Science and Engineering A., 2001, Vol. 318(1-2), pp. 34-41. doi:10.1016/S0921-5093(01)01339-9
Volokitin A., Volokitina I., Panin E., Naizabekov A., Lezhnev S. Strain state and microstructure evolution of AISI-316 austenitic stainless steel during high-pressure torsion (HPT) process in the new stamp design. Metalurgija, 2021, Vol. 60(3-4), pp. 325-328.
Volokitin A., Naizabekov A., Volokitina I., Lezhnev S., Panin E. Thermomechanical treatment of steel using severe plastic deformation and cryogenic cooling. Mater. Letters, 2021, 304, 130598. doi:10.1016/j.matlet.2021.130598
Erbel S. Mechanical properties and structure of extremely strain-hardened copper. Metals Technology, 1979, Vol.6, рр. 482-486."