Улучшение фотометрических характеристик керамики YAG:Ce: исследование роли отжига в радиационном синтезе
DOI:
https://doi.org/10.31489/2023No2/118-126Ключевые слова:
синтез, YAG:Ce керамика, структура, радиационный синтез, люминесценцияАннотация
Керамические образцы иттриево-алюминиевого граната, легированного церием (YAG:Ce), были успешно синтезированы с использованием мощного поля электронного потока с энергией 1,4 МэВ и плотностью мощности 23 кВт/см2. Керамика была сформирована за короткий промежуток времени - всего за одну секунду - из специально приготовленной смеси оксидов иттрия, алюминия и церия. Процесс радиационного синтеза керамики в полях радиационного потока принципиально отличается от методик, обычно используемых сегодня. Проанализированные дифракционные картины близко совпадают с задокументированными для керамик YAG:Ce, как по положению пиков, так и по пропорциям. Кроме того, каждый образец последовательно демонстрировал пространственную групповую симметрию Ia-3d. Спектры люминесценции и возбуждения керамики, синтезированной в этом исследовании, очень похожи на спектры YAG:Ce керамики, полученной другими методами, и люминофоров на основе YAG:Ce. Полосы люминесценции демонстрируют высокую эффективность, а соотношения интенсивностей ультрафиолетовых полос варьируются у исследуемых люминофоров. Эффективность преобразования излучения керамики в люминесценцию оказалась впечатляющей, достигнув показателей 0,57 и 0,48 для промышленных люминофоров SDL 4000 и YAG-02 соответственно. Было также замечено, что увеличение квантовой эффективности образцов может быть достигнуто с помощью высокотемпературного отжига. Высокая эффективность преобразования подчеркивает высокий потенциал описанного метода синтеза люминесцентной керамики.
Библиографические ссылки
Ueda J., Tanabe S. Review of luminescent properties of Ce3+-doped garnet phosphors: New insight into the effect of crystal and electronic structure. Optical Materials, 2019. Vol.1. pp. 100018. doi:10.1016/j.omx.2019.100018
Pankratov V., Popov A.I., Shirmane L., et al. Luminescence and ultraviolet excitation spectroscopy of SrI2 and SrI2:Eu2+. Radiation Measurements, 2013. Vol. 56, pp. 13-17. doi:10.1016/j.radmeas.2013.02.022
Chernov S.A., Trinkler L., Popov A.I. Photo- and thermo-stimulated luminescence of CsI-Tl crystal after UV light irradiation at 80 K. Radiation Effects and Defects in Solids, 1998. Vol. 143 (4), pp. 345-355. doi:10.1080/10420159808214037
Elsts E., Rogulis U., Bulindzs K., et al. Studies of radiation defects in cerium, europium and terbium activated oxyfluoride glasses and glass ceramics. Optical Materials, 2015. Vol. 41, pp. 90-93. doi:10.1016/j.optmat.2014.10.042
Pankratov V., Popov A.I., Kotlov A., Feldmann C. Luminescence of nano- and macrosized LaPO4:Ce,Tb excited by synchrotron radiation. Optical Materials, 2011. Vol.33 (7), pp. 1102-1105. doi:10.1016/j.optmat.2010.12.019
Polisadova E., Valiev D., Vaganov V., et al. Time-resolved cathodoluminescence spectroscopy of YAG and YAG:Ce3+ phosphors. Optical Materials, 2019. Vol. 96, pp. 109289. doi:10.1016/j.optmat.2019.109289
Karipbayev Z.T., Lisitsyn V.M., Mussakhanov D.A., et al. Time-resolved luminescence of YAG:Ce and YAGG:Ce ceramics prepared by electron beam assisted synthesis. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2020. Vol. 479, pp. 222-228. doi:10.1016/j.nimb.2020.06.046
Sidorenko A.V., Bos A.J.J., Dorenbos P., et al. Storage properties of Ce3+ doped haloborate phosphors enriched with10B isotope. Journal of Applied Physics, 2004, Vol. 95 (12), pp. 7898-7902. doi:10.1063/1.1719260
Platonenko A., Popov A.I. Structural and electronic properties of β-NaYF4 and β-NaYF4:Ce3+. Optical Materials, 2020. Vol. 99, pp. 109529. doi:10.1016/j.optmat.2019.109529
Karipbayev Z.T.; Lisitsyn V.M.; Golkovski M.G.; Zhilgildinov Z.S., et al. Electron Beam-Assisted Synthesis of YAG:Ce Ceramics. Materials, 2023. Vol. 16, pp. 1-11. doi:10.3390/ma16114102
Narukawa Y., Ichikawa M., Sanga D., Sano M., Mukai T. White light emitting diodes with super-high luminous efficacy. J. Phys. D Appl. Phys., 2010. Vol.43, pр. 354002. doi:10.1088/0022-3727/43/35/354002
George N.C., Denault K.A., Seshadri R. Phosphors for solid-state white lighting. Annu. Rev. Mater. Res., 2013,Vol. 43, pp. 481–501. doi:10.1146/annurev-matsci-073012-125702
Ye S., Xiao F., Pan Y.X., et al. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. Mater. Sci. Eng. R Rep., 2010, Vol.71, pp. 1–34. doi:10.1016/j.mser.2010.07.001
Yoshikawa A., et al. Crystal growth and scintillation properties of multi-component oxide single crystals: Ce:GGAG and Ce:La-GPS. J. Lumin., 2016, Vol.169, рр. 387–393. doi:10.1016/j.jlumin.2015.04.001
Osipov V.V., Ishchenko A.V., Shitov V.A., et al. Fabrication, optical and scintillation properties of transparent YAG:Ce. Opt. Mater., 2017, Vol.71, рр.98–102. doi:10.1016/j.optmat.2016.05.016
Kucera M., Nikl M., Hanus M., Onderisinova Z. Gd3+ to Ce3+ energy transfer in multi-component GdLuAG and GdYAG garnet scintillators. Phys. Stat. Solidi (RRL), 2013, Vol.7, рр. 571–574. doi:10.1002/pssr.201307256
Choe J.Y. Luminescence and compositional analysis of Y3Al5O12:Ce films fabricated by pulsed-laser deposition. J. Mat. Res. Innovat., 2002, Vol.6, рр. 238-241. doi:10.1007/s10019-002-0204-4
Murai S., et al. Scattering-based hole burning in Y3Al5O12:Ce3+ monoliths with hierarchical porous structures prepared via the sol-gel route. J. Phys. Chem: C, 2011, Vol.115,рр. 17676–17681. doi:10.1021/jp204594c
Hakuta Y., et al. Continuous production of phosphor YAG:Tb nanoparticles by hydrothermal synthesis in supercritical water. Materials Research, 2003, Vol.38, рр. 1257-1265. doi:10.1016/S0025-5408(03)00088-6
Vasilica Ţucureanu, et al. Effect of process parameters on YAG:Ce phosphor properties obtained by co-precipitation method. Ceramics Intern., 2020. Vol. 46, pp. 23802-23812. doi:10.1016/j.ceramint.2020.06.156
Huczko A. Fast combustion synthesis and characterization of YAG:Ce3+ garnet nanopowders. Phys. Status Solidi B, 2013, Vol.250, рр. 2702–2708. doi:10.1002/pssb.201300066
Lisitsyn V., et al. Luminescence of the tungsten-activated MgF2 ceramics synthesized under the electron beam. Nuclear Inst. and Methods in Physics Research, 2018, Vol.435, рр. 263–267. doi:10.1016/j.nimb.2017.11.012
Lisitsyn V.M., et al. YAG based phosphors, synthesized in a field of radiation. IOP Conf. Series: Journal of Physics: Conf. Series, 2018, Vol.1115, рр. 052007. doi:10.1088/1742-6596/1115/5/052007
Alpyssova G., Lisitsyn V.M., Karipbayev Zh.T. et al. Luminescence of cerium doped yttrium aluminumgarnet ceramics synthesized in the field of radiation flux. Eurasian phys. tech. j., 2021. Vol. 18, №3(37), pp. 37-42. doi 10.31489/2021No3/37-42
Hongling Shi, et al. Luminescence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances. Optical Materials Express, 2014, Vol.4(4), рр.649-655. doi:10.1364/OME.4.000649
Zorenko Y., Voznyak T., Gorbenko V., et al. Luminescence properties of Y3Al5O12:Ce nanoceramics. J. Lumin. 2011, Vol.131, рр. 17–21. doi:10.1016/j.jlumin.2010.08.015
Dorenbos P. 5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and «simple» oxides. J. Lumin. 2002, Vol.99, рр. 283–299. doi:10.1016/S0022-2313(02)00347-2
Munoz-Garcia A.B., Barandiaran Z., Seijo L. Antisite defects in Ce-doped YAG (Y3Al5O12): First-principles study on structures and 4f-5d transitions. J. Mater. Chem., 2012, Vol. 22, рр. 19888–19897. doi:10.1039/C2JM34479C
He X., Liu X., Li R., et al. Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles. Sci. Rep., 2016, Vol.6, р. 22238. doi: 10.1038/srep22238
Lisitsyn V., Lisitsyna L., Tulegenova A., et al. Nanodefects in YAG:Ce-Based Phosphor Microcrystals. Crystals, 2019, Vol.9 р.476. doi:10.3390/cryst9090476.