ИССЛЕДОВАНИЕ ЖИЗНЕСПОСОБНОСТИ ПРЕПРЕГОВ НА ОСНОВЕ ЭПОКСИДНОЙ СМОЛЫ С АРОМАТИЧЕСКИМ АМИННЫМ ОТВЕРДИТЕЛЕМ

ИССЛЕДОВАНИЕ ЖИЗНЕСПОСОБНОСТИ ПРЕПРЕГОВ НА ОСНОВЕ ЭПОКСИДНОЙ СМОЛЫ С АРОМАТИЧЕСКИМ АМИННЫМ ОТВЕРДИТЕЛЕМ

Авторы

DOI:

https://doi.org/10.31489/2023No3/62-69

Ключевые слова:

полимерный композиционный материал, препреги, смола, отвердитель, полимерное связующее, углеродное волокно, жизнеспособность

Аннотация

Настоящее время наблюдается устойчивая тенденция использования углепластиков в авиационно-космической и оборонной промышленности, основанная преимущественно на использовании предварительно пропитанных полуфабрикатов - препрегов. Производство углепластиковых деталей из препрегов часто требует длительного производственного времени, в течение которого препрег должен сохранять свои эксплуатационные свойства. Поэтому одной из основных характеристик препрега является его жизнеспособность. В данной работе разработана подходящая композиция смолы с оптимизированными свойствами и методика исследования жизнеспособности образцов препрега, основанная на определении липкости и степени отверждения препрега в зависимости от времени хранения. Изучено влияние времени хранения препрега на прочностные характеристики отвержденных ламинатов. Были получены образцы препрега с длительной жизнеспособностью до 60 дней. Полученные экспериментальные данные имеют практическое значение при промышленном производстве изделий из углепластиков, так как устанавливают связь между эксплуатационными свойствами препрега и сроками хранения.

Библиографические ссылки

Nelyub V.А. Technologies for obtaining prepregs. All materials. Encyclopedic reference book. 2013, No. 3. pp. 12–17. [in Russian]

Perepelkin K.E. Reinforcing fibers and fibrous polymer composites. St. Petersburg, Scientific foundations and technologies. 2009, 380 p. [in Russian]

Belova N.А. Composite materials based on carbon fibers. Young scientist, 2015, No. 24.1, pp. 5–7. [in Russian]

Meyirbekov M.N., Ismailov M.B., Manko T.A., Kozis K.V. Study of the influence of rubber on stremgth properties of carbon plastic. Space Science and Technology, 2022, Vol. 28, No. 5, pp. 67–74. doi:10.15407/knit2022.05

Ospanali A.T., Kenzhegulov A.K., Zhumadilov B.E., Suyundykova G.S., Medyanova B.S., Partizan G., Aliev B.A. Obtaining of carbon nanofibers based on polyacrylonitrile by the method of electrospinning. Eurasian Physical Technical Journal, 2020, Vol. 33, No. 1, pp. 35–38. doi:10.31489/2020No1/35-38

Ma Y., Gu Y., Li Y., et al. Interlaminar properties of carbon fiber composites laminates with resin transfer molding/prepreg co-curing process. J. Reinf. Plast. Compos., 2014, Vol. 33, pp. 2228 – 2241. doi:10.1177/ 073168441455706

Mangalgiri P.D. Composite materials for aerospace applications. Bull. Mater. Sci., 1999, Vol. 22, pp. 657–664. doi:10.1007/bf02749982

Suzuki T., Takahashi J. Prediction of energy intensity of carbon fiber reinforced plastics for massproduced passenger cars. Proceedings of the 9th Japan International SAMPE Symposium, Tokyo. 2005, pp.14 – 19.

Ashcroft, W.R. Curing agents for epoxy resins. Springer. 1993, 37-71 р. doi:10.1007/978-94-011-2932-9_2

Olin epoxy, Transportation-Composites (Resins & Systems). Available at: https://olinepoxy.com/industries /transportation/transportation-composites-resins-systems / (March22, 2022)

Specialchem company, Epoxy Resins for Adhesives and Sealants. Available at: https://adhesives.special chem.com/selection-guide/epoxy-resins-for-adhesives-and-sealants/examples-of-elevated-temperature- (March11,2022)

Niazi M., Beheshty M.H. A new latent accelerator and study of its effect on physical, mechanical and shelflife of carbon fiber epoxy prepreg. Iranian Polymer Journal, 2019, Vol.28, pp.337–346. doi:10.1007/s13726-019-00704-8

Ji K.J., Wei C.Y., Deng W.H., et al. Evaluation of glass fibre/epoxy prepreg quality during storage. Polym. Compos., 2002, Vol. 10, pp. 599–604. doi:10.1177/096739110201000803

Jones R.W., Yeow N., McClelland J.F. Monitoring ambient-temperature aging of a carbon-fiber/epoxy composite prepreg with photoacoustic spectroscopy. Compos. Part A., 2008, Vol. 39, pp. 965 – 971. doi:10.1016/j.compositesa.2008.03.015

Grunenfelder L.K., Nutt S.R. Prepreg age monitoring via differential scanning calorimetry. J. Reinf. Plast. Compos., 2012, Vol. 31, pp. 295–302. doi:10.1177/0731684411431020

Gu Y., Li M., Zhang Z, et al. Effects of resin storage aging on rheological property and consolidation of composite laminates. Polym. Compos., 2009, Vol. 30, pp.1081–1090. doi:10.1002/pc.20659

Budelmann D., Detampel H., Schmidt C., Meiners D. Interaction of process parameters and material properties with regard to prepreg tack in automated lay-up and draping processes. Compos. A. Appl. Sci. Manuf., 2019, Vol. 117, pp. 308 – 316. doi:10.1016/j.compositesa.2018.12.001

Blass D., Kreling S., Dilger K. The impact of prepreg aging on its processability and the postcure mechanical properties of epoxy-based carbon-fiber reinforced plastics. J Materials: Design and Applications, 2017, Vol. 231(1-2), pp. 62–72. doi:10.1177/1464420716665413

Smith A.W., Endruweit A., Choong G.Y.H., et al. Adaptation of material deposition parameters to account for out-time effects on prepreg tack. Composites Part A, 2020, Vol. 133, pp. 105835. doi:10.1016/j.compositesa. 2020.105835

Endruweit A., Choong G.Y.H., Ghose S., et al. Characterisation of tack for uni-directional prepreg tape employing a continuous application-and-peel test method. Compos A Appl. Sci. Manuf., 2018, Vol. 114, pp. 295 – 306. doi:10.1016/j.compositesa.2018.08.027

Meiirbekov M.N., Ismailov M.B., Manko T.A. The effect of the modification of an epoxy resin by liquid oligomers on the physical-mechanical properties of composites. Voprosy khimii i khimicheskoi tekhnologii, 2020, Vol. 3, pp. 122-127. doi:10.32434/0321-4095-2020-130-3-122-127

Yermakhanova A.M., Baiserikov B.M., Kenzhegulov A.K., Meiirbekov M.N., Zhumadilov B.Y. Study on methods to improve the mechanical properties of aramid/epoxy composites. Journal of Elastomers & Plastics, 2023, Vol. 55, No. 2, pp. 331-346. doi:10.1177/00952443221147645

Mustafa M., Ismailov M.B., Sanin A.F. Study on the effect of plasticizers and thermoplastics on the strength and toughness of epoxy resins. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2020, No. 4, pp. 63-68. doi:10.33271/nvngu/2020­4/063

Yermakhanova А.М., Kenzhegulov А.K., Meiirbekov М.N., Samsonenko А.I., Baiserikov B.M. Study of radio transparency and dielectric permittivity of glass- and aramid epoxy composites. Eurasian Physical Technical Journal, 2023, Vol.20, No. 2(44), pp. 60-68. doi: 10.31489/2023NO2/70-78

ASTM D2979-01 Standard Test Method for Pressure-Sensitive Tack of Adhesives Using an Inverted Probe Machine. Available at: https://www.astm.org/d2979-01.html (March11, 2022)

Stark W., Jaunich M., McHugh J. Cure state detection for pre-cured carbon-fibre epoxy prepreg (CFC) using Temperature-Modulated Differential Scanning Calorimetry (TMDSC). Polymer Testing, 2013, Vol. 32, No. 7, pp.1261 – 1272. doi:10.1016/j.polymertesting.2013.07.007

Hale A. Thermosets. Handbook of thermal analysis and calorimetry. 2002, Vol.3, pp. 295 – 354.

Schmidt C., Weber P., Hocke T., Denkena, B. Influence of prepreg material quality on carbon fiber reinforced plastic laminates processed by automated fiber placement. Procedia CIRP, 2018, Vol. 67, pp. 422–427. doi:10.1016/j.procir.2017.12.236

Yang, et al. A novel bio-based, flame retardant and latent imidazole compound-Its synthesis and uses as curing agent for epoxy resins. Journal of Applied Polymer Science, 2022, Vol. 139, pp. e53079. doi: 10.1002/app.53079

Kuznetsova I.O., Grebeneva T.A. Regulation of the viability of epoxy SMC prepregs. Bulletin of Science, 2020, Vol. 2, No. 1(22), pp. 210 – 217. [in Russian]

Cheremukhina I.V. Features of diffusion processes when producing prepregs by layer-by-layer application of components. Vestnik VGUIT, 2021, Vol. 83, No. 2, pp. 224 – 229. doi:10.20914/2310-1202-2021-2-224-229. [in Russian]

Cole K.C., No Ёel D., Hechler J-J., et al. Room-temperature aging of Narmco 5208 carbon-epoxy prepreg. Part II: physical, mechanical, and nondestructive characterization. Polym. Compos., 1991, Vol. 12, pp. 203-212.

Scola D.A., Vontell J., Felsen M. Effects of ambient aging of 5245C/graphite prepreg on composition and mechanical properties of fabricated composites. Polym. Compos., 1987, Vol. 8, pp. 244–250.

Ji K.J., Wei C.Y., Deng W.H., et al. Evaluation of glass fibre/epoxy prepreg quality during storage. Polym. Compos., 2002, Vol. 10, pp. 599–604. doi:10.1177/096739110201000803

Rabby M.M., Das P.P., Rahman M., Vadlamudi V., Raihan R. Prepreg age monitoring and qualitative prediction of mechanical performance of composite using dielectric state variables. Polymers and Polymer Composites, 2022, Vol. 30, pp. 09673911221145053. doi:10.1177/09673911221145053

Degree of cure - A104. Available at: https:// compositeskn.org/KPC/A104 / (March22, 2023)

Загрузки

Опубликована онлайн

2023-07-04

Как цитировать

Байсериков B., Ермаханова, А., Исмаилов, М., Кенжегулов, А., & Кенжалиев B. (2023). ИССЛЕДОВАНИЕ ЖИЗНЕСПОСОБНОСТИ ПРЕПРЕГОВ НА ОСНОВЕ ЭПОКСИДНОЙ СМОЛЫ С АРОМАТИЧЕСКИМ АМИННЫМ ОТВЕРДИТЕЛЕМ. Eurasian Physical Technical Journal, 20(3(45), 62–69. https://doi.org/10.31489/2023No3/62-69

Выпуск

Раздел

Инженерия (техническая физика)

Наиболее читаемые статьи этого автора (авторов)

Loading...