Моделирование образования и распределения впрысков жидкого топлива в реагирующем турбулентном потоке

Моделирование образования и распределения впрысков жидкого топлива в реагирующем турбулентном потоке

Авторы

DOI:

https://doi.org/10.31489/2024No2/22-30

Ключевые слова:

ископаемое топливо, распыление, моделирование, сжигание, угол впрыска, выбросы

Аннотация

В статье представлены вычислительные эксперименты по распылению жидкого топлива и распределению его капель в турбулентном реагирующем потоке. Первичное и вторичное распыление капель двух видов жидких топлив (изооктана и додекана) при наличии горения описывалось уравнениями неразрывности, импульса, внутренней энергии, концентрации компонентов реагирующих веществ и двухпараметрической моделью расчета турбулентного течения. Получены результаты исследования распыления, дисперсии и горения капель углеводородных жидких топлив в модельной камере сгорания при изменении угла впрыска форсунки. Значения угла впрыска варьировались от 2 до 10 градусов. На основе вычислительного эксперимента получены температурные профили и концентрационные характеристики продуктов сгорания и газа в камере сгорания в различные моменты времени. Численные расчеты распределения Саутеровского среднего диаметра капель имеют аналогичные кривые дисперсии для додекана. Это говорит о том, что точность и адекватность разработанной комплексной модели образования и распределения распыла в реагирующем потоке подтверждена ее сильной корреляцией и хорошим согласием результатов моделирования с экспериментальными данными других исследователей. Такого рода методы моделирования и полученные на их основе результаты вычислительных экспериментов широко используются не только в традиционной теплоэнергетике, но и при исследовании технологических процессов в камерах сгорания двигателей нового поколения, при сжигании альтернативных видов топлива и их оптимизации.
Ключевые слова:ископаемое топливо, распыление, моделирование, сжигание, угол впрыска, выбросы.

Сведения об авторах

Болегенова С.А.

Bolegenova, SaltanatAlikhanovna- Doctor of Phys. and Math. Sciences, Professor, Head of the Department of Thermophysics and Technical Physics, al-Farabi Kazakh National University, Almaty, Kazakhstan; SCOPUS Author ID: 57192917040; ORCID iD:0000-0001-5001-7773; Saltanat.Bolegenova@kaznu.edu.kz

Аскарова А.С.

Askarova, Aliya Sandybayevna – Doctor of Phys. and Math. Sciences, Professor, Department of Thermophysics and Technical Physics, al-Farabi Kazakh National University, Almaty, Kazakhstan; SCOPUS Author ID: 6603209318; ORCID: iD: 0000-0003-1797-1463; Aliya.Askarova@kaznu.edu.kz

Оспанова Ш.С.

Ospanova, Shynar Sabitovna- PhD, Senior Lecturer, Department of Thermophysics and Technical Physics, al-Farabi Kazakh National UniversityAlmaty, Kazakhstan; Scopus Author ID: 55988678700;https://orcid.org/0000-0001-6902-7154; Shynar.Ospanova@kaznu.edu.kz

Маканова А.Б.

Makanova, Ayaulym Bolatkanovna – Master's student, Department of Thermophysics and Technical Physics, al-Farabi Kazakh National UniversityAlmaty, Kazakhstan; https://orcid.org/0009-0005-1721-3090; aiko.20.20@mail.ru

Жумагалиева С.А.

Zhumagaliyeva, Sabina Audanbaikyzy- Master's student, al-Farabi Kazakh National University, Almaty, Kazakhstan;
https://orcid.org/0009-0001-7975-1135; zhumasabina@icloud.com

Нурмуханова А.З.

Nurmukhanova, Alfiya Zeinullovna – Candidate of Techn. Sciences, Senior Lecturer, Department of Thermophysics and Technical Physics, al-Farabi Kazakh National University, Almaty, Kazakhstan; SCOPUS Author ID: 57217224044;https://orcid.org/0000-0002-0289-3610; alfiya.nurmukhanova777@gmail.com

Адильбаев Н.А.

Adilbayev, Nurken Amidollayevich –Doctoral student, al-Farabi Kazakh National UniversityAlmaty, Kazakhstan;SCOPUS Author ID: 58906640200; https://orcid.org/0000-0002-8622-8588; adilbayev_nurken2@live.kaznu.kz

Шалкар А.

Shalkar, Akzhol – Master’s student, al-Farabi Kazakh National University, Almaty, Kazakhstan;https://orcid.org/0009-0001-0485-0358; Shalkar.akzhol@gmail.com

Библиографические ссылки

Bolegenova S., Askarova A., Slavinskaya N., Ospanova Sh., Maxutkhanova A., Aldiyarova A., Yerbosynov D. (2022) Statistical modeling of spray formation, combustion, and evaporation of liquid fuel droplets, Phys. Sci. Technol. 9 (2), 69-82. DOI:10.26577/phst.2022.v9.i2.09.

Gallen L., Riber E., Cuenot B. (2023) Investigation of soot formation in turbulent spray flame burning real fuel. Combust. Flame. 258, 112621. DOI:10.1016/j.combustflame.2023.112621.

Hinrichs J., Schweitzer-De Bortoli S., Pitsch H. (2021) 3D modeling framework and investigation of pollutant formation in a condensing gas boiler. Fuel. 300, 120916.DOI:10.1016/j.fuel.2021.120916.

Report from the Bureau of National Statistics on air protection in the Republic of Kazakhstan (2022). [in Russian]. Available at: https://stat.gov.kz/ru/industries/business-statistics/stat-inno-/publications/68178/

Amsden A.A. (1993) KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries. Los Alamos, 95. Available at: https://www.lanl.gov/projects/feynman-center/deploying-innovation/intellectual-property/software-tools/ kiva/_assets/docs/KIVA3man.pdf

Amsden A.A. (1999) KIVA-3V, RELEASE 2, IMPROVEMENTS TO KIVA-3V. Los Alamos, 34. Available at: https://www.lanl.gov/projects/feynman-center/deploying-innovation/intellectual-property/software-tools/kiva_assets/ docs/KIVA3V.pdf

Gorokhovski M., Hermann M. (2008) Modeling primary atomization. Annu. Rev. Fluid Mech. 40, 343-366. DOI:10.1146/annurev.fluid.40.111406.102200.

Askarova A.S., Bolegenova S.A., Ospanova Sh.S., Rakhimzhanova L.A., Nurmukhanova A.Z., Adilbayev N.A. (2024) Optimization of fuel droplet sputtering and combustion at high turbulence flows. Russ. Phys. J., 67, 2, 167-170. DOI:10.1007/s11182-024-03104-5.

Li Y., Huang Y., Luo K., Liang M., Lei B. (2021) Development and validation of an improved atomization model for GDI spray simulations: Coupling effects of nozzle-generated turbulence and aerodynamic force. Fuel. 299, 120871. DOI:10.1016/j.fuel.2021.120871.

Berezovskaya I.E., Tasmukhanova A.A., Ryspaeva M.Zh., Ospanova Sh.S. (2023) Investigation of the influence of liquid fuel injection rate on the combustion process using KIVA-II software. Eurasian Physical Technical Journal, 20, 3(45), 43–51. DOI:10.31489/2023No3/43-51.

Amsden A.A., O'Rourke P.J., Butler T.D. (1989) KIVA-II: A computer program for chemically reactive flows with sprays. Los Alamos, 160. Available at:https://www.lanl.gov/projects/feynman-center/deploying-innovation/intellectual -property/software-tools/kiva/_assets/docs/KIVA2.pdf

Gorokhovski M., Zamansky R. (2018) Modeling the effects of small turbulent scales on the drag force for particles below and above the Kolmogorov scale. Phys. Rev. Fluids. 3, 034602. DOI:10.1103/PhysRevFluids.3.034602.

Liao Y., Jeng S.M., Jog M.A., Benjamin M.A. (2001) Advanced submodel for airblast atomizers. J. Propul. Power. 17, 2, 411–417. DOI:10.2514/2.5757.

Gorokhovski M.A., Oruganti S.K. (2022) Stochastic models for the droplet motion and evaporation in under-resolved turbulent flows at a large Reynolds number. J. Fluid Mech. 932, 18. DOI:10.1017/jfm.2021.916.

Shen L., Fang G., Wang S., Xing F., Chan Sh. (2022) Numerical study of the secondary atomization characteristics and droplet distribution of pressure swirl atomizers. Fuel. 324, Part B, 124643. DOI:10.1016/ j.fuel.2022.124643.

Askarova A.S., Bolegenova S.A., Maximov V.Yu., Bolegenova S.A., Ospanova Sh.S., Beketayeva M.T., Nugymanova A.O., Pilipenko N.V., Shortanbayeva Zh.K., Baktybekov K.S., Syzdykov A.B. (2018) Investigation of the different Reynolds numbers influence on the atomization and combustion processes of liquid fuel. Bulg. Chem. Commun. 50, 68-77. Available at:http://www.bcc.bas.bg/bcc_volumes/Volume_50_Special_G_2018/50G_PD_68-77.66.pdf

Askarova A., Bolegenova S., Ospanova Sh., Slavinskaya N., Aldiyarova A., Ungarova N. (2021) Simulation of non-isothermal liquid sprays under large-scale turbulence. Phys. Sci. Technol. 8, 28-40. DOI:10.26577/phst.2021.v8.i2.04.

Choi M.,Lee S., Park S. (2023) Numerical and experimental study of gaseous fuel injection for CNG direct injection. Fuel. 140, 693-700. DOI:10.1016/j.fuel.2014.10.018.

Chen L., Sun D., Yang K., Song P., Wang Sh., Zeng W. (2023) Experimental study on the effect of plasma excitation on the atomization characteristics of aviation kerosene transverse jet. Fuel. 332, Part 2, 126210. DOI:10.1016/j.fuel.2022.126210.

Arcoumanis C., Gavaises M. (1998) Linking nozzle flow with spray characteristics in a diesel fuel injection systems. Atom. Sprays. 8, 307–347. DOI:10.1615/AtomizSpr.v8.i3.50.

Загрузки

Поступила

2023-11-07

Одобрена

2024-01-30

Принята

2024-04-20

Опубликована онлайн

2024-06-29

Как цитировать

Болегенова S., Аскарова A., Оспанова S., Маканова A., Жумагалиева S., Нурмуханова A., Адильбаев N., & Шалкар A. (2024). Моделирование образования и распределения впрысков жидкого топлива в реагирующем турбулентном потоке. Eurasian Physical Technical Journal, 21(2(48), 22–30. https://doi.org/10.31489/2024No2/22-30

Выпуск

Раздел

Энергетика

Наиболее читаемые статьи этого автора (авторов)

Loading...