Численное моделирование процесса экструзии высоковязких паст

Численное моделирование процесса экструзии высоковязких паст

Авторы

DOI:

https://doi.org/10.31489/2024No1/114-123

Ключевые слова:

экструзия, поршневой дозатор, серебряная паста, вязкость, терпинеол

Аннотация

В статье представлено теоретическое рассмотрение процесса экструзии пасты с помощью поршневого дозатора. Паста представляет собой высоковязкую суспензию терпинеола и порошка частиц серебра. В результате численного моделирования получено распределение частиц серебра в установившемся потоке пасты. Получены избыточное давление в поршне и эффективная ширина дорожки в зависимости от скорости поршня. Моделирование показало, что наибольшее влияние на процесс экструзии оказывает вязкость пасты. Использование полученных зависимостей позволит управлять процессом экструзии пасты.

Библиографические ссылки

Divakaran N., Das J.P., PV A.K., Mohanty S., Ramadoss A., Nayak S.K. Comprehensive review on various additive manufacturing techniques and its implementation in electronic devices. Journal of Manufacturing Systems, 2022, Vol. 62, pp. 477 – 502. https://doi.org/10.1016/j.jmsy.2022.01.002

Hassan K., Nine M.J., Tung T.T., Stanley N., Yap P.L., Rastin H., et al. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. Nanoscale, 2020, Vol. 12, No. 37, pp.19007 – 19042. https://doi.org/10.1039/D0NR04933F

Tan H.W., Choong Y.Y.C., Kuo C.N., Low H.Y., Chua C.K. 3D printed electronics: Processes, materials and future trends. Progress in Materials Science, 2022, Vol. 127, p. 100945. https://doi.org/10.1016/j.pmatsci.2022.100945

Rida A., Yang L., Tentzeris M.M. Design and characterization of novel paper-based inkjet-printed UHF antennas for RFID and sensing applications. In IEEE Antennas and Propagation Society International Symposium. HI, USA, 2007, pp. 2749 – 2752. https://doi.org/10.1109/APS.2007.4396104

Cook B.S., Mariotti C., Cooper J.R., Revier D., Tehrani B.K., Aluigi L., Roselli L., Tentzeris, M.M. Inkjet- printed, vertically-integrated, high-performance inductors and transformers on flexible LCP substrate. In 2014 IEE MTT-S International Microwave Symposium (IMS2014), 2014, pp. 1 – 4. https://doi.org/10.1109/MWSYM.2014.6848575

Kim S. Inkjet-Printed Electronics on Paper for RF Identification (RFID) and Sensing. Electronics, 2020, Vol.9, No. 10, pp. 1636. https://doi.org/10.3390/electronics9101636

Tentzeris M.M., Rida A., Traille A., Lee H., Lakafosis V., Vyas R. Inkjet-printed paper/polymer-based RFID and Wireless Sensor Nodes: The final step to bridge cognitive intelligence, nanotechnology and RF? XXXth URSI General Assembly and Scientific Symposium. Istanbul, Turkey, 2011, pp. 1 – 4. https://doi.org/10.1109/URSIGASS.2011.6050690

Cook B.S., Fang Y., Kim S., Le T., Goodwin W.B., Sandhage K.H. Inkjet catalyst printing and electroless copper deposition for low-cost patterned microwave passive devices on paper. Electronic Materials Letters, 2013, Vol.9, pp. 669 – 676. https://doi.org/10.1007/s13391-013-3027-0

Abutarboush H.F., Shamim A. Wide frequency independently controlled dual‐band inkjet‐printed antenna. IET Microwaves, Antennas & Propagation, 2014, Vol. 8, No. 1, pp. 52 – 56. https://doi.org/10.1049/iet-map.2013.0229

Kim S., Cook B.S., Le T., Cooper J., Lee H., Lakafosis V. Inkjet-printed antennas, sensors and circuits on paper substrate. IET Microwaves, Antennas and Propagation, 2013, Vol. 7 No. 10, pp. 858 – 668. https://doi.org/10.1049/iet-map.2012.0685

Pongpaibool P., Wallada W., Siwamogsatham S. A Thickened-and-Widened Feed Dipole Antenna with an Inductive Matching Loop for a Printed UHF RFID Tag. In National Electronics and Computer Technology Center. Sapporo, Japan, 2014, pp. 2092 – 2096. https://doi.org/10.1109/InfoSEEE.2014.6946293

Shaker G., Safavi-Naeini S., Sangary N., Tentzeris M.M. Inkjet Printing of Ultrawideband (UWB) Antennas on Paper-Based Substrates. IEEE Antennas and wireless propagation letters, 2011, Vol. 10, pp. 111 –114. https://doi.org/10.1109/LAWP.2011.2106754

Haerinia M., Noghanian S. Design of Hybrid Wireless Power Transfer and Dual Ultrahigh-Frequency Antenna System. Proceeding of the URSI International Symposium on Electromagnetic Theory (EMTS). California, USA, 2019, 4 p. https://doi.org/10.23919/URSI-EMTS.2019.8931514

Haerinia M., Noghanian S. A Printed Wearable Dual-Band Antenna for Wireless Power Transfer. Sensors, 2019, Vol. 19, No. 7, p. 1732. https://doi.org/10.3390/s19071732

Shadid R., Haerinia M., Noghanian S. Study of Rotation and Bending Effects on a Flexible Hybrid Implanted Power Transfer and Wire-less Antenna System. Sensors, 2020, Vol. 20, No. 5, p. 1368. https://doi.org/10.3390/s20051368

Trufanova, N.S., Artishchev S.A., Ragimov E.R., Loschilov A.G., Malyshenko A.M.. Technique for extraction of electric frequency parameters of conductive ink. Journal of Physics: Conference Series, 2022, Vol. 2291, No. 1, p. 012015. https://doi.org/10.1088/1742-6596/2291/1/012015

Kreit E., Steffen T., Aga R., Bartsch C., Wu B.I., Heckman E. Printed multilayer conformal x-band antenna array. Flexible and Printed Electronics, 2017, Vol. 2, No. 4, p. 045009. https://doi.org/10.1088/2058-8585/aa940b

Correia V., Mitra K.Y., Castro H., Rocha J.G., Sowade E., Baumann R.R., Lanceros-Mendez S. Design and fabrication of multilayer inkjet-printed passive components for printed electronics circuit development. Journal of Manufacturing Processes, 2018, Vol. 31, pp. 364 – 371. https://doi.org/10.1016/j.jmapro.2017.11.016

Hardin J.O., Grabowski C.A., Lucas M., Durstock M.F., Berrigan J.D. All-printed multilayer high voltage capacitors with integrated processing feedback. Additive Manufacturing, 2019, Vol. 27, pp. 327 – 333. https://doi.org/10.1016/j.addma.2019.02.011

Kwon K.S., Rahman M.K., Phung T.H., Hoath S.D., Jeong S., Kim J.S. Review of digital printing technologies for electronic materials. Flexible and Printed Electronics, 2020, Vol. 5, No. 4, p. 043003. https://doi.org/10.1088/2058-8585/abc8ca

Li W., Ghazanfari A., Leu M.C., Landers R.G. Extrusion-on-demand methods for high solids loading ceramic paste in freeform extrusion fabrication. Virtual and Physical Prototyping, 2017, Vol. 12, No. 3, pp. 193 – 205. https://doi.org/10.1080/17452759.2017.1312735

Chen X.B., Kai J. Modeling of positive-displacement fluid dispensing processes. IEEE Transactions on Electronics Packaging Manufacturing, 2004, Vol. 27, No. 3, pp. 157 – 163. https://doi.org/10.1109/TEPM.2004.843083

Bruneaux J., Therriault D., Heuzey M.C. Micro-extrusion of organic inks for direct-write assembly. Journal of Micromechanics and Microengineering, 2008, Vol. 18, No. 11, p. 115020. https://doi.org/10.1088/0960-1317/18/11/115020

COMSOL. The Level Set Method. https://www.comsol.com/forum/thread/attachment/37361/The-level-set-methodfrom-MEMS-Module-5198.pdf.

Besagni G., Varallo N., Mereu R. Computational Fluid Dynamics Modelling of Two-Phase Bubble Columns: A Comprehensive Review. Fluids, 2023, Vol. 8, No. 3, p. 91. https://doi.org/10.3390/fluids8030091

Schmidt G.A., Lin Y.J., Xu Y., Wang D., Yilmaz G., Turng L.S. Viscosity characterization and flow simulation and visualization of polytetrafluoroethylene paste extrusion using a green and biofriendly lubricant. Polymer Engineering & Science, 2021, Vol. 61, No. 4, pp. 1050 – 1065. https://doi.org/10.1002/pen.25632

Shen F., Dixit M.B., Zaman W., Hortance N., Rogers B., Hatzell, K.B. Composite electrode ink formulation for all solid-state batteries. Journal of The Electrochemical Society, 2019, Vol. 166, No. 14, p. A3182. https://doi.org/10.1149/2.0141914jes

Slistan-Grijalva A., Herrera-Urbina R., Rivas-Silva J.F., Ávalos-Borja M., Castillón-Barraza F.F., Posada-Amarillas A. Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Physica E: Low-dimensional Systems and Nanostructures, 2005 Vol. 27, No. 1 – 2, pp. 104 – 112. https://doi.org/10.1016/j.physe.2004.10.014

El-Said M., Bhuse V., Arendsen A. An empirical study to investigate the effect of air density changes on the DSRC performance. Procedia computer science, 2017, Vol. 114, pp. 523 – 530. https://doi.org/10.1016/j.procs.2017.09.025

Won H.I., Nersisyan H., Won C.W., Lee J.M., Hwang J.S. Preparation of porous silver particles using ammonium formate and its formation mechanism. Chemical Engineering Journal, 2010, Vol. 156, No. 2, pp. 459 – 464. https://doi.org/10.1016/j.cej.2009.10.053

Fujasova‐Zednikova M., Vobecka L., Vejrazka J. Effect of solid material and surfactant presence on interactions of bubbles with horizontal solid surface. The Canadian Journal of Chemical Engineering, 2010, Vol. 88, No. 4, pp. 473 – 481. https://doi.org/10.1002/cjce.20326

Загрузки

Опубликован

2024-03-29

Как цитировать

Гадиров, Р., Борисов, А., Труфанова, Н., Рагимов, Э., & Артищев, С. (2024). Численное моделирование процесса экструзии высоковязких паст. Eurasian Physical Technical Journal, 21(1(47), 114–123. https://doi.org/10.31489/2024No1/114-123

Выпуск

Раздел

Инженерия (техническая физика)

Похожие статьи

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.

Loading...