N-ЖӘНЕ S-ТОПТАРЫ БАР КӨМІРТЕКТІ КВАНТТЫҚ НҮКТЕЛЕРДІҢ СПЕКТРЛІК ЖӘНЕ ЛЮМИНЕСЦЕНТТІК ҚАСИЕТТЕРІ

N-ЖӘНЕ S-ТОПТАРЫ БАР КӨМІРТЕКТІ КВАНТТЫҚ НҮКТЕЛЕРДІҢ СПЕКТРЛІК ЖӘНЕ ЛЮМИНЕСЦЕНТТІК ҚАСИЕТТЕРІ

Авторлар

DOI:

https://doi.org/10.31489/2021No2/12-17

Кілт сөздер:

көміртегі кванттық нүктелері, микротолқынды синтез, флуоресценция, электронды микроскопия, атомдық күштік микроскопия, флуоресценция кванттық шығымы.

Аңдатпа

"В представленной работе получены углеродные квантовые точки методом микроволнового синтеза на основе лимонной кислоты и L-цистеина. Полученные частицы были охарактеризованы методами электронной и зондовой микроскопии, методом динамического рассеяния света и инфракрасной спектроскопии с Фурье преобразованием. Спектрально-люминесцентные свойства были исследованы для исходного раствора, а также растворов, полученных в результате диализа синтезированного продукта. Показано, что все образцы демонстрируют одинаковые оптические свойства. В то же время измерение квантовых выходов показало, что лучшей флуоресцентной способностью обладают углеродные точки, прошедшие через диализную мембрану. "

References

"1 Molaei M.J. The optical properties and solar energy conversion applications of carbon quantum dots: A review. Solar Energy, 2020, Vol.196, pp. 549–566.

Wang Y., Hu A. Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C, 2014, Vol.2, pp. 6921–6939.

Jhonsi M.A. Carbon Quantum Dots for Bioimaging. Available at: www.intechopen.com/books/state-of-the-art-in-nano-bioimaging/carbon-quantum-dots-for-bioimaging (June 20, 2018)

Yuan T., Yuan F., Li X., et al. Fluorescence–phosphorescence dual emissive carbon nitride quantum dots show 25% white emission efficiency enabling single-component WLEDs. Chem. Sci., 2019, Vol.10, pp. 9801–9806.

Dong Y., Pang H., Yang H.B., et al. Carbon-Based Dots Co-doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission. Angew. Chem. Int. Ed., 2013, Vol.52, pp. 7800–7804.

Qu S., Liu X., Guo X., et al. Amplified Spontaneous Green Emission and Lasing Emission From Carbon Nanoparticles. Adv. Funct. Mater., 2014, Vol.24, pp. 2689–2695.

Lin H., Huang J., Ding L. Preparation of carbon dots with high-fluorescence quantum yield and their application in dopamine fluorescence probe and cellular imaging. Journal of Nanomaterials. 2019, Article ID 5037243, pp. 1 – 9. Available at: https://doi.org/10.1155/2019/5037243 (Oct 17, 2019)

Song Y., Zhu Sh., Zhang Sh. et al Investigation from chemical structure to photoluminescence mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C, 2015, Vol. 3, pp. 5976–5984.

Wang T., Wang A., Wang R., et al Carbon dots with molecular fluorescence and their aplication as a “turn-of” fuorescent probe for ferricyanide detection. Scientific Reports, 2019, Vol.9. Available at: www.nature.com/articles /s41598-019-47168-7 (July 24, 2019)

Essner J.B., Kist J.A., Polo-Parada L., et al Artifacts and Errors Associated with the Ubiquitous Presence of Fluorescent Impurities in Carbon Nanodots. Chem. Mater. 2018, Vol.30, pp. 1878−1887.

Ibrayev N.Kh., Ishchenko A.A., Afanasyev D.A., et al Active laser medium for near-infrared spectral range based on electron-unsymmetrical polymethine dye and silver nanoparticles. Appl. Phys. B. 2019, Vol.125, pp. 1–7.

Seliverstova E., Ibrayev N., Omarova G., et al Competitive influence of the plasmon effect and energy transfer between chromophores and Ag nanoparticles on the fluorescent properties of indopolycarbocyanine dyes. Journal of Luminescence, 2021, Vol. 235, p.118000. DOI:10.1016/j.jlumin.2021.118000

Wanga W., Zeng Zh., Zeng G., et al. Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4as novel photocatalyst for destruction of Escherichia coliand tetracycline degradation under visible light. Chemical Engineering Journal, 2019, Vol. 378, p.122132. DOI:10.1016/j.cej.2019.122132

Xia Ch., Hai X., Chen X.W., et al. Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route forfluorescent detection. Talanta, 2017, Vol.168, pp. 269–278.

Wang Y., Kalytchuk S., Zhang Y., et al. Thickness-Dependent Full-Color Emission Tunability in a Flexible Carbon Dot Ionogel. Phys. Chem. Lett., 2014, Vol.5, pp. 1412−1420.

Roy P., Po-Cheng Chen P., Periasamy A.P., et al. Photoluminescent carbon nanodots: synthesis, physic-chemical properties and analytical applications. Materials Today, 2015, Vol. 18, No 8, pp. 447-458. DOI:10.1016/j.mattod.2015.04.005

Park M., Kim H.S., Yoon H., et al. Controllable Singlet–Triplet Energy Splitting of Graphene Quantum Dots through Oxidation: From Phosphorescence to TADF. Advanced materials, 2020, Vol. 32, No. 31, pp. 2000936 (1-10). DOI: 10.1002/adma.202000936."

Downloads

How to Cite

Ибраев N., Джанабекова R., & Аманжолова G. (2021). N-ЖӘНЕ S-ТОПТАРЫ БАР КӨМІРТЕКТІ КВАНТТЫҚ НҮКТЕЛЕРДІҢ СПЕКТРЛІК ЖӘНЕ ЛЮМИНЕСЦЕНТТІК ҚАСИЕТТЕРІ. Eurasian Physical Technical Journal, 18(2(36), 12–17. https://doi.org/10.31489/2021No2/12-17

Журналдың саны

Бөлім

Материалтану

Most read articles by the same author(s)

Loading...