Алгоритм поиска точки максимальной мощности при затенении или выходе из строя фотоэлементов солнечных батарей на спутниках, использующих низкие орбиты

Алгоритм поиска точки максимальной мощности при затенении или выходе из строя фотоэлементов солнечных батарей на спутниках, использующих низкие орбиты

Авторы

DOI:

https://doi.org/10.31489/2023No1/65-72

Ключевые слова:

Отслеживание точки максимальной мощности, Python, ток, напряжение, отказ, эффект затенения, система электроснабжения

Аннотация

Затенение солнечных батарей или выход из строя нескольких фотоэлементов изменяет характеристику выходного тока-напряжения. В данной работе рассматривается алгоритм приближения и поиска максимальной мощности, генерируемой на борту космического аппарата, что очень важно для быстрой зарядки вторичных источников электрической энергии, поскольку время пребывания на солнечной стороне на низких орбитах ограничено по времени. В настоящее время алгоритмы поиска максимальной мощности работают в идеальных случаях, а в случаях затенения солнечных панелей или выхода из строя фотоэлементов/элементов необходимы простые и эффективные алгоритмы. В данной работе проведено моделирование солнечной панели в различных условиях. Реализован алгоритм построения выходных вольт-амперных характеристик солнечного элемента и солнечной панели. Также были проведены эксперименты различных алгоритмов на реальных устройствах.

Библиографические ссылки

Venkatesan, A., Lowenthal, J., Prem, P. et al. The impact of satellite constellations on space as an ancestral global commons. Nat Astron. 2020, Vol.4, pp. 1043 – 1048. doi:10.1038/s41550-020-01238-3

Sulistya A.H., Hasbi W., Muhiba R. Design and implementation of effective electrical power system for Surya satellite -1. IOP Conf. Series: Earth and Environmental Science. 2018, Vol. 149, pp. 012059. doi:10.1088/1755-1315/149/1/012059

Juan J. Rojas, Yamauchi Takashi, Mengu Cho. A lean satellite electrical power system with direct energy transfer and bus voltage regulation based on a bi-directional buck converter. Aerospace. 2020, 7(7), pp. 94. doi:10.3390/aerospace7070094

Schirone L., Ferrara M., Granello P., Paris C., Pellitteri F. Power Bus Management Techniques for Space Missions in Low Earth Orbit. Energies. 2021, Vol. 14, pp. 7932. doi:10.3390/en14237932

Salman Salman, Xin AI, Zhouyang WU. Design of a P-&-O algorithm-based MPPT charge controller for a stand-alone 200 W PV system. Protection and control of modern power systems. 2018, 3, Article number 25.

Mahdi A.S., Mahamad A.K., Saon S., et al. Maximum power point tracking using perturb and observe, fuzzy logic and ANFIS SN Applied Sciences. 2020, 2, Article number: 89.

Mishra P.K., Tiwari P. 2021. Incremental conductance MPPT in grid-connected PV system. International Journal of Engineering, Science, and Technology, Vol.13, No. 1, pp. 138-145. doi: 10.4314/ijest.v13i1.21S

Silva I. F., Toffoli F.L., Vicente P., Vicente E.M. Maximum power point tracking based on the curve sweep method. Proceeding of the 14th IEEE Intern. Conf. on Industry Applications (INDUSCON) doi:10.1109/INDUSCON51756.2021.9529667

Sevty Satria Bhatara, Reza Fauzi Iskandar, M. Ramdlan Kirom., Design and Simulation of Maximum Power Point Tracking (MPPT) System on Solar Module System Using Constant Voltage (CV) Method. Proceeding of the AIP Conference. 2016, 1712, 030012. doi:10.1063/1.4941877

Roberto F. Coelho, et al. MPPT Approach Based on Temperature Measurements Applied in PV Systems. Proceeding of the 9th IEEE/IAS Intern.Conf.on Industry Applications doi:10.1109/INDUSCON.2010.5740006

Syed, Irtaza M.; Yazdani, Amirnaser (2014). Simple mathematical model of photovoltaic module for simulation in Matlab/Simulink. Proceeding of the 27th Canadian Conference on Electrical and Computer Engineering (CCECE) 2014, pp. 1–6. doi:10.1109/CCECE.2014.6900977.

Boussada Z., Ben Hamed M., Sbita L., Photovoltaic Cell Mathematical Modelling. International Journal of Engineering Research & Technology (IJERT). 2017, Vol. 6, Issue 06, pp. 884-887. doi:10.17577/IJERTV6IS060166

Alonso-Alvarez D., Wilson T., Pearce P., et al. Solcore: a multi-scale, Python-based library for modeling solar cells and semiconductor materials. Journal of Computational Electronics. 2018, Vol.17, pp. 1099–1123 doi:10.1007/s10825-018-1171-3

Xuan Hieu Nguyen, Minh Phuong Nguyen, Mathematical modeling of photovoltaic cell/module/arrays with tags in Matlab/Simulink. Environ Syst Res. 2015, Vol. 4, pp. 24. doi: 10.1186/s40068-015-0047-9

Kurmanbay A., Baktybekov K., Sakhanov K., Syzdykov A., Mukhamediyev A. Optimization of series-parallel connection of PV array to mitigate negative influence of partial shading conditions. Proceeding of the 18th Intern. Conf. "Aviation and Cosmonautics". IOP Conf. Series: Materials Science and Engineering 868. 2020, pp. 012001. doi:10.1088/1757-899X/868/1/012001

Veerapen, Sonia, Huiqing Wen. Shadowing effect on the power output of a photovoltaic panel. Proceeding of the 8th IEEE Intern. Power Electronics and Motion Control Conf. (IPEMC 2016 - ECCE Asia) - Hefei, China. 2016, pp. 3508–3513. doi:10.1109/IPEMC.2016.7512858

Baktybekov K., Kurmanbay A., Sakhanov K., Syzdykov A., Mukhamediyev A. Particle swarm optimization with individually biased particles for reliable and robust maximum power point tracking under partial shading conditions. Eurasian phys. tech. j. 2020, Vol.17, No.2(34), pp. 128-137. doi: 10.31489/2020No2/128-137.

William F. Holmgren, Clifford W. Hansen, and Mark A. Mikofski. Pvlib python: a python package for modeling solar energy systems. Journal of Open Source Software. 2018, 3(29), 884. doi:10.21105/joss.00884

Andrews R.W., Stein J.S., Hansen C., and Riley D. Introduction to the open source pvlib for python photovoltaic system modeling package. Proceeding of the 40th IEEE Photovoltaic Specialist Conference. 2014, pp. 0170-0174. doi:10.1109/PVSC.2014.6925501

Загрузки

Опубликована онлайн

2023-04-09

Как цитировать

Сыздыков A., Бақтыбеков K., Мессерле V., Комаров F., Асқарұлы R., Зилгаринов D., & Мурат A. (2023). Алгоритм поиска точки максимальной мощности при затенении или выходе из строя фотоэлементов солнечных батарей на спутниках, использующих низкие орбиты. Eurasian Physical Technical Journal, 20(1(43), 65–72. https://doi.org/10.31489/2023No1/65-72

Выпуск

Раздел

Инженерия (техническая физика)
Loading...