Влияние марки полимера низкой плотности на температурный переход и зарядовое поведение воска как твердожидкого теплоаккумулятора

Влияние марки полимера низкой плотности на температурный переход и зарядовое поведение воска как твердожидкого теплоаккумулятора

Авторы

DOI:

https://doi.org/10.31489/2024No2/14-21

Ключевые слова:

разложение, спектры, углеводороды, плавление, затвердевание, термические

Аннотация

Первоначальная оценка загрузки для технического улучшения парафина в качестве теплоаккумулирующего материала проводится путем композитинга с группой пластиков низкой плотности. Оценка направлена на получение температурного перехода смеси, включая химический спектр и теплофизическое поведение. В смеси имеется дополнительный пик перехода после основного фазового перехода. Она колеблется в пределах 15,26–19,34 °C (плавление) и 11,98–9,45 °C (замерзание). Химические наблюдения указывают на хорошее соответствие, поскольку композит может быть образован без химической реакции. Более того, характеристика разложения предполагает, что смесь плавится раздельно. Для оценки заряда композит PW/LDPE имеет лучшие характеристики заряда с максимальным приращением около 25% по сравнению с PW. Он также имеет уникальный температурный профиль, изотермический профиль которого можно получить за короткое время. Однако композит PW/LLDPE имеет низкую зарядку, что приводит к более длительному заряду по сравнению с PW. Несмотря на различия, оба полимера имеют значительные шансы быть использованы в качестве стабилизаторов для HSM и могут быть адаптированы в соответствии с конкретными требованиями для применения в области аккумулирования тепла.
Ключевые слова: разложение, спектры, углеводороды, плавление, затвердевание, термические.

Сведения об авторах

Rahman R.A.

Rahman, Reza Abdu– PhD Student, Universitas Diponegoro, Semarang, Indonesia; Master (Eng.), Lecturer, Department of Mechanical Engineering, Universitas Pancasila, Jakarta, Indonesia. Scopus Author ID: 57218544155; https://orcid.org/0000-0002-8047-6716; reza.a@univpancasila.ac.id

Rahman R.A.

Rahman, Reza Abdu– PhD Student, Universitas Diponegoro, Semarang, Indonesia; Master (Eng.), Lecturer, Department of Mechanical Engineering, Universitas Pancasila, Jakarta, Indonesia. Scopus Author ID: 57218544155; https://orcid.org/0000-0002-8047-6716; reza.a@univpancasila.ac.id

Sulistyo

Sulistyo, - PhD, Doctor of Engineering, Associate Professor, Universitas Diponegoro, Semarang, Indonesia Scopus Author ID: 35184175000; https://orcid.org/0000-0002-3232-7871; sulistyo@lecturer.undip.ac.id

Utomo M.S.K.T.S.

Utomo, Mohamad Said Kartono Tony Suryo – PhD,Doctor of Engineering, Assistant Professor, Universitas Diponegoro, Semarang, Indonesia Scopus AuthorI D: 57567230600; https://orcid.org/0000-0002-6857-0857; tonysuryoutomo@lecturer.undip.ac.id

Febriansyah I.

Febriansyah, Ilham - Master (Eng.), Department of Mechanical Engineering, Universitas Pancasila, Jakarta, Indonesia;https://orcid.org/0009-0006-0412-5013; 5322220007@univpancasila.ac.id

Библиографические ссылки

Ismail I., MulyantoA.T., Rahman R.A. (2022) Development of free water knock-out tank by using internal heat exchanger for heavy crude oil. EUREKA: Physics and Engineering, 4, 77–85. DOI: 10.21303/2461-4262.2022.002502.

Firman L.O.M., Adji R.B., Ismail, Rahman R.A. (2023) Increasing the feasibility and storage property of cellulose-based biomass by forming shape-stabilized briquette with hydrophobic compound. Case Studies in Chemical and Environmental Engineering, 8(April), 100443. DOI:10.1016/j.cscee.2023.100443.

Suyitno B.M., Rahman R.A., Sukma H., Rahmalina D. (2022) The assessment of reflector material durability for concentrated solar power based on environment exposure and accelerated aging test. Eastern-European Journal of Enterprise Technologies, 6(12–120), 22–29. DOI:10.15587/1729-4061.2022.265678.

Khademi A., Abtahi Mehrjardi S.A., Tiari S., Mazaheri K., Shafii M.B. (2022) Thermal efficiency improvement of brayton cycle in the presence of phase change material. International Conference on Fluid Flow, Heat and Mass Transfer, 135, 1–9. DOI:10.11159/ffhmt22.135.

Khademi A., Darbandi M., Behshad Shafii M., Schneider G.E. (2019) Numerical simulation of thermal energy storage process benefiting from the phase change materials concept. AIAA Propulsion and Energy Forum and Exposition, 2019, August, 1–9. DOI:10.2514/6.2019-4225.

Khademi A., Mehrjardi S.A.A., Said Z., Chamkha A.J. (2023) Heat transfer improvement in a thermal energy storage system using auxiliary fluid instead of nano-PCM in an inclined enclosure: a comparative study. Journal of Applied and Computational Mechanics, 9(2), 475-486. DOI:10.22055/jacm.2022.41867.3829.

Khademi A., Darbandi M., Schneider G.E. (2020) Numerical study to optimize the melting process of phase change material coupled with extra fluid. AIAA Scitech 2020 Forum, 1 Part F, 1–6. DOI:10.2514/6.2020-1932.

Alkahdery L.A., Yurchenko A.V., Mohammed J.A.K., Mekhtiyev A.D., Neshina Y.G. (2023) Performance improvement of solar dryer using an auxiliary heat source under different values of airflow rates. Eurasian Physical Technical Journal, 20(1–43), 42–50. DOI:10.31489/2023No1/42-50.

Usenkov R.A., Kokhanova S.Y., Trushin M.V. (2023) The use of alternative energy sources for the operation of engineering systems of detached consumers. Eurasian Physical Technical Journal, 20(2–44), 46–56. DOI:10.31489/2023No2/46-56.

Ali S., Mehrjardi A., Khademi A., Fazli M. (2024) Optimization of a thermal energy storage system enhanced with fins using generative adversarial networks method. Thermal Science and Engineering Progress, 49(February), 102471. DOI:10.1016/j.tsep.2024.102471.

Cui W., Li X., Li X., Lu L., Ma T., Wang Q. (2022) Combined effects of nanoparticles and ultrasonic field on thermal energy storage performance of phase change materials with metal foam. Applied Energy, 309(August 2021), 118465. DOI:10.1016/j.apenergy.2021.118465.

Palacio M., Ramírez C., Carmona M., Cortés C. (2022) Effect of phase-change materials in the performance of a solar air heater. Solar Energy, 247(April), 385–396. DOI:10.1016/j.solener.2022.10.046.

Hosseininaveh H., Mohammadi O., Faghiri S., Shafii M.B. (2021) A comprehensive study on the complete charging-discharging cycle of a phase change material using intermediate boiling fluid to control energy flow. Journal of Energy Storage, 35, 102235. DOI:10.1016/j.est.2021.102235.

Zhang Z., Zhang N., Yuan Y., Phelan P.E., Attia S. (2023) Thermal performance analysis of an existing building heating based on a novel active phase change heater. Energy and Buildings, 278, 112646. DOI:10.1016/j.enbuild.2022.112646.

Mehta D.S., Vaghela B., Rathod M.K., Banerjee J. (2020) Thermal performance augmentation in latent heat storage unit using spiral fin: An experimental analysis. Journal of Energy Storage, 31(April), 101776. DOI:10.1016/j.est.2020.101776.

Hashem Zadeh S.M., Ghodrat M., Ayoubi Ayoubloo K., Sedaghatizadeh N., Taylor R.A. (2022) Partial charging/discharging of bio-based latent heat energy storage enhanced with metal foam sheets. International Communications in Heat and Mass Transfer, 130(November 2021), 105757. DOI:10.1016/j.icheatmasstransfer.2021.105757.

Bastida H., De la Cruz-Loredo I., Ugalde-Loo C.E. (2023) Effective estimation of the state-of-charge of latent heat thermal energy storage for heating and cooling systems using non-linear state observers. Applied Energy, 331(August 2022), 120448. DOI:10.1016/j.apenergy.2022.120448.

Beyne W., Couvreur K., T’Jollyn I., Lecompte S., De Paepe M. (2022) Estimating the state of charge in a latent thermal energy storage heat exchanger based on inlet/outlet and surface measurements. Applied Thermal Engineering, 201(PB), 117806. DOI:10.1016/j.applthermaleng.2021.117806.

Du Y., Zhou T., Zhao C., Ding Y. (2022) Molecular dynamics simulation on thermal enhancement for carbon nano tubes (CNTs) based phase change materials (PCMs). International Journal of Heat and Mass Transfer, 182, 122017. DOI:10.1016/j.ijheatmasstransfer.2021.122017.

Gandhi M., Kumar A., Elangovan R., Meena C.S., Kulkarni K.S., Kumar A., Bhanot G., Kapoor N.R. (2020) A review on shape-stabilized phase change materials for latent energy storage in buildings. Sustainability (Switzerland), 12(22), 1–17. DOI:10.3390/su12229481.

Weng J., Huang Q., Li X., Zhang G., Ouyang D., Chen M., Yuen A.C.Y., Li A., Lee E.W.M., Yang W., Wang J., Yang X. (2022) Safety issue on PCM-based battery thermal management: Material thermal stability and system hazard mitigation. Energy Storage Materials, 53(September), 580–612. DOI:10.1016/j.ensm.2022.09.007.

He M., Xie D., Yin L., Gong K., Zhou K. (2023) Influences of reduction temperature on energy storage performance of paraffin wax/graphene aerogel composite phase change materials. Materials Today Communications, 34(October 2022), 105288. DOI:10.1016/j.mtcomm.2022.105288.

Zarrinjooy Alvar M., Abdeali G., Bahramian A.R. (2022) Influence of graphite nano powder on ethylene propylene diene monomer/paraffin wax phase change material composite: Shape stability and thermal applications. Journal of Energy Storage, 52(PC), 105065. DOI:10.1016/j.est.2022.105065.

Suyitno B.M., Anggrainy R., Plamonia N., Rahman R.A. (2023) Preliminary characterization and thermal evaluation of a direct contact cascaded immiscible inorganic salt/high-density polyethylene as moderate temperature heat storage material. Results in Materials, 19, 100443. DOI:10.1016/j.rinma.2023.100443.

Al-Gunaid T., Sobolčiak P., Chriaa I., Karkri M., Mrlik M., Ilčíková M., Sedláček T., Popelka A., Krupa I. (2023) Phase change materials designed from Tetra Pak waste and paraffin wax as unique thermal energy storage systems. Journal of Energy Storage, 64(October 2022). DOI:10.1016/j.est.2023.107173.

Mu M., McNally T. (2022) The effect of multi-walled carbon nanotubes on the thermo-physical properties of shape stabilised phase change materials for buildings based on high density polyethylene and paraffin wax. Journal of Energy Storage, 55(PC), 105601. DOI:10.1016/j.est.2022.105601.

Al-Haydari I.S., Al-Haidari H.S., Khudhur H.M.N., Jummah N.W., Al-Hamza M.A. (2021) Durability and aging characteristics of sustainable paving mixture. International Journal of Engineering, Transactions B: Applications, 34(8), 1865–1873. DOI:10.5829/ije.2021.34.08b.07.

Liu C., Xiao T., Zhao J., Liu Q., Sun W., Guo C., Ali H.M., Chen X., Rao Z., Gu Y. (2023) Polymer engineering in phase change thermal storage materials. Renewable and Sustainable Energy Reviews, 188, 113814. DOI:10.1016/j.rser.2023.113814.

Rahmalina D., Zada A.R., Soefihandini H., Ismail I., Suyitno B.M. (2023) Analysis of the thermal characteristics of the paraffin wax/high-density polyethylene (HDPE) composite as a form-stable phase change material (FSPCM) for thermal energy storage. Eastern-European Journal of Enterprise Technologies, 1(6 (121)), 6–13. DOI:10.15587/1729-4061.2023.273437.

Rolka P., Kwidzinski R., Przybylinski T., Tomaszewski A. (2021) Thermal characterization of medium-temperature phase change materials (Pcms) for thermal energy storage using the t-history method. Materials, 14(23). DOI:10.3390/ma14237371.

Firman L.O.M., Rahmalina D., Rahman R.A. (2023) Hybrid energy-temperature method (HETM): A low-cost apparatus and reliable method for estimating the thermal capacity of solid – liquid phase change material for heat storage system. HardwareX, 16, e00496. DOI:10.1016/j.ohx.2023.e00496.

Brütting M., Vidi S., Hemberger F., Ebert H.P. (2019) Dynamic T-History method - A dynamic thermal resistance for the evaluation of the enthalpy-temperature curve of phase change materials. Thermochimica Acta, 671(September 2018), 161–169. DOI:10.1016/j.tca.2018.10.030.

Yang B., Raza A., Bai F., Zhang T., Wang Z. (2019) Microstructural evolution within mushy zone during paraffin’s melting and solidification. International Journal of Heat and Mass Transfer, 141, 769–778. DOI:10.1016/j.ijheatmasstransfer.2019.07.019.

Tang Y., Su D., Huang X., Alva G., Liu L., Fang G. (2016) Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity. Applied Energy, 180, 116–129. DOI:10.1016/j.apenergy.2016.07.106.

Janghel D., Karagadde S., Saha S.K. (2023) Measurement of shrinkage void and identification of solid-liquid phases in phase change materials: Ultrasound-based approach and simulated predictions. Applied Thermal Engineering, 223(December 2022), 120048. DOI:10.1016/j.applthermaleng.2023.120048.

Загрузки

Поступила

2023-04-07

Одобрена

2024-04-14

Принята

2024-05-23

Опубликована онлайн

2024-06-29

Как цитировать

Rahman, R., Rahman, R., Sulistyo, Utomo, M., & Febriansyah, I. (2024). Влияние марки полимера низкой плотности на температурный переход и зарядовое поведение воска как твердожидкого теплоаккумулятора. Eurasian Physical Technical Journal, 21(2(48), 14–21. https://doi.org/10.31489/2024No2/14-21

Выпуск

Раздел

Материаловедение
Loading...