Влияние нормализующего нагрева пресс-порошков ферритов на уплотнение при радиационно-термическом спекании.
DOI:
https://doi.org/10.31489/2021No3/11-14Ключевые слова:
ферриты, спекание, электронные пучки, предварительный отжиг порошков, линейная усадка, активационная модель усадки.Аннотация
Исследована линейная усадка образцов литий-титанового феррита при радиационно-термическом и термическом спекании. Перед прессованием часть порошков подвергалась термическому нагреву в течение 2 часов при температурах 1273, 1373 и 1473 К. Установлено, что изменение кинетики усадки ферритов после отжига порошков согласуется с классическими представлениями о термическом девозбуждении порошков за счет отжига дефектов. Такие дефекты образовывались в зернах порошка при шлифовании. Анализ полученных данных позволил предложить наиболее вероятную модель радиационно-термической активации спекания порошкового феррита. Получена модель радиационного торможения релаксации неравновесных дефектов.
Библиографические ссылки
"1 Groom D.E., Klein S.R. Review of Particle Physics. European Physical Journal C. 1998, Vol.3, pp. 144 – 151.
Sagynganova I.K., Markin V.B. The organizations of the tasks implementation in the distributed automatic control systems of heat supply stations. News of the National Academy of Sciences of the Republic of Kazakhstan. 2019, Vol. 1, No. 433, pp. 63 – 67.
Ershov B.G. Radiation technologies: their possibilities, state, and prospects of application. Herald of the Russian Academy of Sciences. 2013, Vol. 83, No. 5, pp. 437 – 447.
Obodovskiy I. Radiation: fundamentals, applications, risks, and safety. Elsevier Inc., 2019, 694p. https://doi.org/10.1016/C2014-0-00520-5
Yurov V.M., Baltabekov A.S., Laurinas V.C., Guchenko S.A. Dimensional effects and surface energy of ferroelectric crystals. Eurasian phys. tech. j. 2019, Vol. 16, No. 1(31), pp. 18 – 23. doi 10.31489/2019No1/18-23
Sharma P. Uniyal, Investigating thermal and kinetic parameters of lithium titanate formation by solid-state method, J. Therm. Anal. Calorim. 2017, Vol. 128, pp. 875 – 882.
Rakshit S.K., Parida S.C., Naik Y.P., Venugopal V. Thermodynamic studies on lithium ferrites, J. Solid State Chem. 2011, Vol. 184, pp. 1186 – 1194.
Boldyrev V.V., Voronin A.P., Gribkov O.S., Tkachenko E.V., Karagedov G.R., Yakobson B.I., Auslender V.L. Radiation-thermal synthesis. Current achievement and outlook, J. Solid State Ion. 1989, Vol. 36, pp. 1 – 6.
Lyakhov N.Z., Boldyrev V.V., Voronin A.P., Gribkov O.S., Bochkarev I.G., Rusakov S.V., Auslender V.L. Electron beam stimulated chemical reaction in solids. J. Therm. Anal. Calorim. 1995, Vol. 43, pp. 21 – 31. https://doi.org/10.1007/BF02635965.
Halamani Koushallya M., Mathad Shalini K., Kulkarni Akshay B., Mathad Shridhar N., et al. Variation of structural properties of al doped ni-cd ferrites with sintering time. Eurasian Physical Technical Journal.2020, Vol. 17, No.2 (34), pp. 11 – 18.
Kostishyn V.G., Komlev A.S., Korobeynikov M.V., Bryazgin A.A., Shvedunov V.I., Timofeev A.V., Mikhailenko M.A. Effect of a temperature mode of radiation-thermal sintering the structure and magnetic properties of Mn-Zn-ferrites. Journal of Nano- and Electronic Physics. 2015, Vol. 7, pp. 04044.
Stary O., Malyshev A.V., Lysenko E.N., Petrova A. Formation of magnetic properties of ferrites during radiation-thermal sintering. Eurasian Physical Technical Journal.2020, Vol. 17, No. 2(34). pp. 6 – 10. doi 10.31489/2020No2/6-10.
Nikolaev E.V., Astafyev A.L., Nikolaeva S.A., Lysenko E.N., Zeinidenov А.K. Investigation of electrical properties homogeneity of li-ti-zn ferrite ceramics. Eurasian Physical Technical Journal. 2020, Vol. 17, No.1(33), pp. 5 – 12.
Sharipov M.Z., Hayitov D.E., Rizoqulov M.N., Islomov U.N., Raupova I.B. Domain structure and magnetic properties of terbium ferrite-garnet in the vicinity of the magnetic compensation point. Eurasian Physical Technical Journal.2019, Vol. 16, No. 2(32). pp. 21 – 25.
Mehnert R. Review of industrial applications of electron accelerators. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 1996, Vol. 113, pp. 81 – 87. https://doi.org/10.1016/0168-583X(95)01344-X.
Martins M.N., Silva T.F. Electron accelerators: History, applications, and perspectives. Radiation Physics and Chemistry. 2014, Vol. 95, pp. 78 – 85. https://doi.org/10.1016/j.radphyschem.2012.12.008.
Surzhikov A.P., Frangulyan T.S., Ghyngazov S.A. A thermoanalysis of phase transformations and linear shrinkage kinetics of ceramics made from ultrafine plasmochemical ZrO2(Y)-Al2O3 powders. Journal of Thermal Analysis and Calorimetry.2014, Vol. 115, No. 2, рр. 1439 – 1445.
Surzhikov A.P., Pritulov A.M., Lysenko E.N., Sokolovskiy A.N., Vlasov V.A., Vasendina E.A. Calorimetric investigation of radiation-thermal synthesized lithium pentaferrite. J. Therm. Anal. Calorim. 2010, Vol. 101, No. 1, рр. 11 – 13.
Surzhikov A.P., Pritulov A.M., Lysenko E.N., et al. Influence of solid-phase ferritization method on phase composition of lithium-zinc ferrites with various concentration of zinc. J. Therm. Anal. Calorim. 2012, Vol. 109, No. 1, рр.63 – 67.
Surzhikov A.P., Lysenko E.N., Vlasov V.A., Malyshev A.V., Nikolaev E.V. Investigation of the process of ferrite formation in the Li2CO3-ZnO-Fe2O3 system under high-energy. Russian Physics Journal. 2013, Vol. 56, No. 6, рр. 681 – 685.
Grishaev V.V., Lebed’ B.M. About mechanism of electron-thermal sintering of ferrites. Electronic equipment. Ser. Materials. 1985, No. 1, pp. 18 – 24. [in Russian]
Smith J., Wijn H.P.J. Ferrites: Physical properties of ferromagnetic oxides in relation to their technical application. Eindhoven, Phillips Technical Library, 1959, 233p.
Neronov V.A., Voronin A.P., Tatarintseva M.I., et al. Sintering under a high-power electron beam. Journal of the Less Common Metals. 1986, Vol. 117, pp. 391 – 394. https://doi.org/10.1016/0022-5088(86)90065-2
Geguzin J.E. Physics of Sintering.1984, Moscow, Nauka, 360 p.
"