CORROSION BEHAVIOUR OF MAGNESIUM ALLOYS NZ30K AND NZ30K ALLOYED WITH SILVER IN THE MODEL SOLUTION OF THE OSTEOSYNTHESIS PROCESS
DOI:
https://doi.org/10.31489/2024No3/29-36Keywords:
bioimplant, magnesium alloy NZ30K alloyed with silver, local corrosion, osteosynthesisAbstract
The corrosion behaviour of magnesium alloys NZ30K and NZ30K alloyed with 0.1 wt.% silver in Ringer's Locke solution has been studied, since their components are not toxic to the human body and do not cause clinical complications in the treatment of bone fractures, and silver has antibacterial properties inherent in antibiotics. It has been found that the Ecor potential of the silver-alloyed NZ30K sample was -1.57V during the first 100 seconds of testing, but then it intensively shifted to the positive side to -1.54V within 512 seconds at a rate of 0.051 mV/s, which decreased to 0.014 mV/s after the next 1000 seconds, and a stationary value of the potential Ecor on the sample has been recorded. The sample to uniform general corrosion has been subjected, and the improvement of its potential Ecor during its corrosion study was due to the most intense selective dissolution of magnesium, which has the most negative value of the standard potential among the alloy components, and the enrichment of its surface with Zn, Nd, Zr, Ag, which have a positive value of the standard potential. This trend contributed to a decrease in the rate of general corrosion and made it impossible to develop local corrosion. The NZ30K alloy alloyed with 0.1 wt.% silver is recommended for further potentiodynamic and volumetric corrosion studies to justify its selection as a structural material for the production of biodegradable implants in osteosynthesis.
References
Li H., Zheng Y., Qin L. (2014) Progress of biodegradable metals. Progress in Natural Science: Materials International, 24 (5), 414 – 422. DOI: 10.1016/j.pnsc.2014.08.014.
Samal S. (2016) High‐Temperature Oxidation of Metals. In book: High Temperature Corrosion. 156. DOI:10.5772/63000.
Zeng R.-C., Sun L., Zheng Y.F., Cui H.-Z., Han E.-H. (2014) Corrosion and characterization of dual phase Mg–Li–Ca alloy in Hank’s solution: The influence of microstructural features. Corrosion Science, 79, 69 – 82. DOI:10.1016/j.corsci.2013.10.028.
Cui L.Y., Li X.-T., Zeng R., Ii S., Han E.-H., Song L. (2017) In vitro corrosion of Mg–Ca alloy — The influence of glucose content. Frontiers of Materials Science, 11, 284-295. DOI: 10.1007/s11706-017-0391-y.
Zheng Y.F., Cu X.N., Witte F. (2014) Biodegradable metals. Materials Science and Engineering: R: Reports, 77, 1-34. DOI: 10.1016/j.mser.2014.03.001.
Lowe T.C., Valiev R.Z. (2014) Frontiers for bulk nanostructured metals in biomedical applications. Advanced Biomaterials and Biodevices, 1 - 52. Wiley Blackwell. DOI: 10.1002/9781118774052.ch1.
Xu W., Birbilis N., Sha G., Wang Y., Daniels J.E., Xiao Y., Ferry M. (2015). A high-specific-strength and corrosion-resistant magnesium alloy. Nature Materials, 14, 1229–1235. DOI: 10.1038/nmat4435.
Rad H.R.B., Idris M.H., Kadir M.R. A., Farahany S. (2012) Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys. Materials & Design, 33, 88-97. DOI: 10.1016/j.matdes.2011.06.057.
Müller W.D., Nascimento M.L., Zeddies M., Córsico M., Gassa L.M., Mele M.A.F.L.D. (2007). Magnesium and its alloys as degradable biomaterials: Corrosion studies using potentiodynamic and EIS electrochemical techniques. Materials Research, 10, 5-10. DOI: 10.1590/S1516-14392007000100003.
Witte F., Ulrich H., Rudert M., Willbold E. (2007) Biodegradable magnesium scaffolds: Part 1: Appropriate inflammatory response. Journal of Biomedical Materials Research Part A, 81, 748–756. DOI: 10.1002/jbm.a.31170.
Witte F., Hort N., Vogt C., Cohen S., Kainer K.U., Willumeit R., Feyerabend F. (2008) Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12, 63–72. DOI:10.1016/j.cossms.2009.04.001.
Ferreira P.C., Piai K.D.A., Takayanagui A.M.M., Segura-Muñoz S.I. (2008) Aluminum as a risk factor for Alzheimer's disease. Revista Latino-Americana de Enfermagem, 16, 151-157. DOI: 10.1590/S0104-11692008000100023.
Bach F.W., Schaper M., Jaschik C. (2003) Influence of lithium on hcp magnesium alloys. Materials Science Forum, 419-422, 1037-1042. DOI: 10.4028/www.scientific.net/MSF.419-422.1037.
Avedesian M., Baker H. (1999) ASM specialty handbook: Magnesium and magnesium alloys. Materials Park, OH: ASM Intern., 327. https://s2.iran-mavad.com/book/en/asm-specialty-handbook-magnesium-and-magnesium-alloys.pdf.
An Y., Draughn R.A., Bonucci E. (1999) Mechanical testing of bone and the bone-implant interface. CRC Press, 648. DOI: 10.1201/9781420073560.
Greshta V., Shalomeev V., Dzhus A., Mityaev O. (2023) Study of the influence of silver alloying on the microstructure and properties of magnesium alloy NZ30K for implants in osteosynthesis. New Materials and Technologies in Metallurgy and Mechanical Engineering, 2, 14-19. DOI: 10.15588/1607-6885-2023-2-2. [in Ukrainian]
Kulyk M.F., Zasukha T.V., Lutsyuk M.B. (2012) Saponite and aerosil in animal husbandry and medicine. Textbook Vinnytsia, Ukraine: FOP Rogalska I.O., 362. [in Ukrainian].
Narivs’kyi O.E. (2005) Corrosion Fracture of Platelike Heat Exchangers. Mater Sci., 41, 122–128. DOI:10.1007/s11003-005-0140-8.
Narivs’kyi O.E. (2007) The influence of heterogeneity steel AISI321 on its pitting resistance in chloride-containing media. Materials Science, 2(43), 256-264. DOI: 10.1007/s11003-007-0029-9.
Narivs’kyi O.E. (2007) Micromechanism of corrosion fracture of the plates of heat exchangers. Mater Sci., 43, 124–132. DOI: 10.1007/s11003-007-0014-3.
Wang H., Estrin Y., Zúberová Z. (2008) Biocorrosion of a magnesium alloy with different processing histories. Materials Letters, 62(16), 2476-2479. DOI: 10.1016/j.matlet.2007.12.052.
Salahshoor M., Guo Y. (2012) Biodegradable orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance. Materials (Basel), 5(1), 135–155. DOI: 10.3390/ma5010135.
Pu Z., Song G.-L., & Yang, S. (2012). Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy. Corrosion Science, 57, 192-201. DOI:10.1016/j.corsci.2011.12.018.
Narivs’kyi O., Atchibayev R., Kemelzhanova A., Yar-Mukhamedova G., Snizhnoi G., Subbotin S., Beisebayeva A. (2022) Mathematical modeling of the corrosion behavior of austenitic steels in chloride-containing media during the operation of plate-like heat exchangers. Eurasian Chemico-Technological Journal, 24(4), 295-302. DOI:10.18321/ectj1473.
Narivskyi O.E., Subbotin S.A., Pulina T.V., Khoma M.S. (2022) Assessment and prediction of the pitting resistance of plate-like heat exchangers made of AISI304 steel and operating in circulating waters. Materials Science, 58, 41–46. DOI: 10.1007/s11003-022-00628-4.
Wang H., Estrin Y., Fu H. F. (2007) The effect of pre-processing and grain structure on the biocorrosion and fatigue resistance of magnesium alloy AZ31. Advanced Engineering Materials, 9(11), 967-972. DOI:10.1002/adem.200700200.
Südholz A.D., Kirkland N.T., Buchheit R.G., Birbilis N. (2010) Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys. Electrochemical and Solid-State Letters, 14(2), C5. DOI:10.1149/1.3523229.
Zeng R.-C., Zhang J., Huang W.-J., Dietzel W., Kainer K.U., Blawert C., Wei K.E. (2006) Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 16(2), 763-771. DOI:10.1016/S1003-6326(06)60297-5.
Kozlovskiy A. (2024) Study of the influence of the accumulated dose of damage in the near-surface layer on resistance to external influences associated with corrosion processes during high-temperature annealing. Eurasian Physical Technical Journal, 21(1(47)), 14–20. DOI: 10.31489/2024No1/14-20.
Ghali E. (2010) Properties, use, and performance of magnesium and its alloys in Corrosion resistance of aluminum and magnesium alloys: Understanding, performance, and testing. Wiley. Parts 3. 319 – 347. DOI:10.1002/9780470531778.ch9.
Narivskyi O.E., Belikov S.B., Subbotin S.A., Pulina T.V. (2021) Influence of chloride-containing media on the pitting resistance of AISI321 steel. Materials Science, 57(2), 291-297. DOI:10.1007/s11003-021-00544-z.
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.