OVERVIEW OF CARBON MATERIALS FOR USE IN LITHIUM-ION BATTERIES AND SUPERCAPACITORS

OVERVIEW OF CARBON MATERIALS FOR USE IN LITHIUM-ION BATTERIES AND SUPERCAPACITORS

Authors

DOI:

https://doi.org/10.31489/2024No4/14-22

Keywords:

lithium-ion battery, supercapacitor, carbon materials, activated carbon, carbon aerogel, nanoporous carbon

Abstract

This review article focuses on the study of carbon materials utilized as electrodes in lithium-ion batteries and supercapacitors. The research examines three primary categories of materials: activated carbon, carbon aerogels, and nanoporous carbon. The article provides a comprehensive explanation of the operational principles of many types of capacitor systems, such as double-layer electrochemical capacitors, pseudo capacitors, and hybrid capacitors. The carbon materials under discussion are thoroughly examined with a focus on their synthesis processes, structural features, and electrochemical properties. The study investigates the impact of pore structure, surface area, and the presence of functional groups on electrode performance. The impact of heat treatment and chemical modification techniques on the properties of synthesized carbon structures has been investigated, specifically examining parameters such as temperature and duration. The text examines the benefits and drawbacks of each material type, taking into account their individual capacity, cyclical stability, and economic efficiency. The study emphasizes the importance of precise adjustment of the synthesis process to enhance the electrochemical characteristics and showcases the possibility of employing these materials in sophisticated energy storage devices. This review serves as a crucial resource for experts engaged in developing cutting-edge materials for lithium-ion batteries and supercapacitors. It also highlights potential topics for future research in the realm of electrochemical energy storage.

Author's detail

M. Dyussembayev

Dyussembayev, Medet – Doctoral Student, Kazakh-British Technical University; Research Associate, U.A. Joldasbekov Institute of Mechanics and Engineering, Almaty, Kazakhstan;  ORCID ID: 0000-0003-2071-7191; m.dyussembayev@gmail.com

A. Khabiyev

Khabiyev, Alibek – PhD,  Associate Professor, Department of Chemical and Biochemical Engineering, Satbayev University; Leading Researcher, U.A. Joldasbekov Institute of Mechanics and Engineering, Almaty, Kazakhstan;  ORCID ID: 0000-0001-9397-2367; alibek1324@mail.ru

Kh. Rafikova

Rafikova, Khadichakhan – PhD,  Associate Professor, Department of Chemical and Biochemical Engineering, Satbayev University; Leading Researcher, U.A. Joldasbekov Institute of Mechanics and Engineering, Almaty, Kazakhstan;  ORCID ID: 0000-0001-8028-2244; hadichahan@mail.ru 

D. Afanasyev

Afanasyev, Dmitriy – PhD,  Professor, Department of Radiophysics and Electronics, E.A. Buketov Karaganda University, Karaganda, Kazakhstan;  ORCID ID:0000-0002-0437-5315; a.d.afanasyev2@gmail.com

References

Truong T.T.T., Le. L.T.M., Tran M.V., Vu P.T., Phung Q., Truong D.Q., Le P.M.L. (2004) Conventional supercapacitor electrolytes: aqueous, organic, and ionic. Supercapacitors, 245 – 265. DOI: 10.1016/b978-0-443-15478-2.00010-3.

Ding R., Chagnot M., Saeed S., Augustyn V. (2023) Nanostructured materials for electrochemical capacitors. In Comprehensive Inorganic Chemistry, Part III. Elsevier, 570. DOI: 10.1016/b978-0-12-823144-9.00128-x.

Mandal M., Chattopadhyay K., Mitra A., Haider D. (2024) 4.16-Micro-supercapacitors based on thin films: Journey so far. Comprehensive Materials Processing, Elsevier, 418. DOI: 10.1016/b978-0-323-96020-5.00092-3.

Callahan C.L., Cameron A.P., Forghani M., Donne S.W. (2024) Analysis of voltametric data from electrochemical capacitor electrode materials: Method refinement for improved outcomes. Electrochimica Acta, 475, 143619. DOI: 10.1016/j.electacta.2023.143619.

Sammed K.A., Farid A., Mustafa S., Kumar A., Tabish M., Khan A.A., Ajmal S., Mo Z., Akbar A.R., Yasin G., Zeng Y.J., Zhao W. (2023) Developing next-generation supercapacitor electrodes by coordination chemistry-based advanced functional carbon nanostructures: Progress, Current challenges and prospects. Fuel Processing Technology, 250, 107896. DOI:10.1016/j.fuproc.2023.107896.

Dong H., Sun K., Li X., Li H., You P., Chen S., Zhou J. (2024). Effects of organic acid and phosphoric acid at the low-voltage stage of the high-voltage forming process for the anode dielectric film of an aluminum electrolytic capacitor. International Journal of Electrochemical Science, 19(6), 100587. DOI: 10.1016/j.ijoes.2024.100587.

Chen C., Wei S., Zhang Q., Yang H., Xu J., Chen L., Liu X. (2024) High-performance VO2/CNT@PANI with core-shell construction enable printable in-planar symmetric supercapacitors. Journal of Colloid and Interface Science, 664, 53–62. DOI:10.1016/j.jcis.2024.03.012.

Arulepp M., Leis J., Lätt M., Miller F., Rumma K., Lust E., Burke A.F. (2006) The advanced carbide-derived carbon based supercapacitor. Journal of Power Sources, 162(2), 1460–1466. DOI 10.1016/j.jpowsour.2006.08.014.

Kaiser, T., von der Höh, N., Menzel, A. (2024). Computational multiscale modelling of material interfaces in electrical conductors. Journal of the Mechanics and Physics of Solids, 186, 105601. DOI: 10.1016/j.jmps.2024.105601.

Panda P., Mishra R., Panigrahy S., Barman S. (2021) Design of Co1Al3(OH)m/carbon nitride hybrid nanostructures for enhanced capacitive energy storage in an alkaline electrolyte. Materials Advances, 2(23), 7671–7680. DOI: 10.1039/d1ma00665g.

Du Y., Liu W., Cui Y., Fan H., Zhang Y., Wang T., Wang H., Jin Y., Liu S., Feng W., Chen M. (2021) Microzone-explosion synthesis of porous carbon electrodes for advanced aqueous solid-state supercapacitors with a high-voltage gel electrolyte. Journal of Energy Chemistry, 60, 95–103. DOI: 10.1016/j.jechem.2020.12.015.

Chauhan P.S., Sengupta R., Kumar S., Panwar V., Sahoo S., Bose S., Misra A. (2023) Role of graded microstructure and electrolyte distribution in electrochemical capacitance of compressible three-dimensional carbon nanotubes-polymer foam based supercapacitor. Electrochimica Acta, 461, 142595. DOI:10.1016/j.electacta.2023.142595.

Liu Y.-S., Ma C., Wang K.-X., Chen J.-S. (2023) Recent advances in porous carbons for electrochemical energy storage. New Carbon Materials, 38(1), 1–15. DOI: 10.1016/s1872-5805(23)60710-3.

Chen Y., Ma Y., Huang J., Xu H. (2022) Fabricating dual redox electrolyte to achieve ultrahigh specific capacitance and reasonable Coulombic efficiency for biomass activated carbon. Electrochimica Acta, 414, 140215. DOI:10.1016/j.electacta.2022.140215.

Abareghi M., Mohsen Saeidi S., Keshavarzi E. (2023) Effect of solvent on electric double layer capacitance and over screening inside spherical cavity by density functional theory. Journal of Molecular Liquids, 383, 122080. DOI: 10.1016/j.molliq.2023.122080.

Kazari H., Pajootan E., Sowa M., Coulombe S., Hubert P. (2023) Plasma-enhanced atomic layer deposition of ruthenium metal on free-standing carbon nanotube forest for 3D flexible binder-less supercapacitor electrodes. Journal of Energy Storage, 64, 107049. DOI: 10.1016/j.est.2023.107049.

Lai H., Li W., Zhou Y., He T., Xu L., Tian S., Wang X., Fan Z., Lei Z., Jiao H. (2019) Hydrophilically engineered polyacrylonitrile nanofiber aerogel as a soft template for large mass loading of mesoporous poly(3,4-ethylenedioxythiophene) network on a bare metal wire for high-rate wire-shaped supercapacitors. Journal of Power Sources, 441, 227212. DOI: 10.1016/j.jpowsour.2019.227212.

Krishna B.H., Reddy C.P., Munirathnam K., Yusuf K., Nagajyothi P.C., Shim J. (2024) In-situ synthesis of coral reef-like synergistic zinc cobalt oxide and zinc manganese oxide composite as a battery-type electrode material for supercapacitors. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 694, 134148. DOI: 10.1016/j.colsurfa.2024.134148.

Bao C., Chu P., Xu C., Yuan J., Si L., Bo Z., Ostrikov K., Yang H. (2024) More disorder is better: Cutting-edge progress of high entropy materials in electrochemical energy storage applications. Energy Storage Materials, 69, 103408. DOI: 10.1016/j.ensm.2024.103408.

Murovhi P., Tarimo D.J., Oyedotun K.O., Manyala N. (2020) High specific energy asymmetric supercapacitor based on alpha-manganese dioxide/activated expanded graphite composite and activated carbon-polyvinyl alcohol. Journal of Energy Storage, 32, 101797. DOI: 10.1016/j.est.2020.101797.

Eroglu O., Kizil H. (2023) Pseudocapacitive sodium-ion storage in one-dimensionally structured anatase TiO2 nanofiber anode for high performance sodium-ion batteries. The Journal of Physics and Chemistry of Solids, 178, 111352. DOI: 10.1016/j.jpcs.2023.111352.

Huo J., Xue Y., Wang X., Liu Y., Zhang L., Guo S. (2020) TiO2/carbon nanofibers doped with phosphorus as anodes for hybrid Li-ion capacitors. Journal of Power Sources, 473, 228551. DOI: 10.1016/j.jpowsour.2020.228551.

Reddy H.P.C., Amalraj J., Ranganatha S., Patil S.S., Chandrasekaran S. (2023) A review on effect of conducting polymers on carbon-based electrode materials for electrochemical supercapacitors. Synthetic Metals, 298, 117447. DOI: 10.1016/j.synthmet.2023.117447.

Yang J.W., Kwon H.R., Seo J.H., Ryu S., Jang H.W. (2024) Nanoporous oxide electrodes for energy conversion and storage devices. RSC Applied Interfaces, 1, 11-42. DOI: 10.1039/d3lf00094j.

Bhowmik S., Bhattacharjee U., Ghosh S., Martha S.K. (2023) Evaluating the feasibility of the spinel-based Li4Ti5O12 and LiNi0.5Mn1.5O4 materials towards a battery supercapacitor hybrid device. Journal of Energy Storage, 73(C), 109099. DOI: 10.1016/j.est.2023.109099.

Seenath J.S., Pech D., Rochefort D. (2022) Investigation of protic ionic liquid electrolytes for porous RuO2 micro-supercapacitors. Journal of Power Sources, 548, 232040. DOI: 10.1016/j.jpowsour.2022.232040.

Huang B., Liu W., Lan Y., Huang Y., Fu L., Lin B., Xu C. (2024) Highly ion-conducting, robust and environmentally stable poly(vinyl alcohol) eutectic gels designed by natural polyelectrolytes for flexible wearable sensors and supercapacitors. Chemical Engineering Journal, 480, 147888. DOI: 10.1016/j.cej.2023.147888.

Schrade S., Zhao Z., Supiyeva Z., Chen X., Dsoke S., Abbas Q. (2022) An asymmetric MnO2|activated carbon supercapacitor with highly soluble choline nitrate-based aqueous electrolyte for sub-zero temperatures. Electrochimica Acta, 425, 140708. DOI: 10.1016/j.electacta.2022.140708.

Xia G., Liu Z., He J., Huang M., Zhao L., Zou J., Lei Y., Yang Q., Liu Y., Tian D., Shen F. (2024) Modulating three-dimensional porous carbon from paper mulberry juice by a hydrothermal process for a supercapacitor with excellent performance. Renewable Energy, 227, 120478. DOI: 10.1016/j.renene.2024.120478.

Wang X., Chang K.-C., Zhang Z., Liu Q., Li L., Ma S., Zhang M. (2021) Performance enhancement and mechanism exploration of all-carbon-nanotube memory with hydroxylation and dehydration through supercritical carbon dioxide. Carbon, 173, 97–104. DOI: 10.1016/j.carbon.2020.10.084.

Downloads

Received

2024-07-04

Revised

2024-10-29

Accepted

2024-12-12

Published online

2024-12-25

How to Cite

Dyussembayev, M., Khabiyev, A., Rafikova, K., & Afanasyev, D. (2024). OVERVIEW OF CARBON MATERIALS FOR USE IN LITHIUM-ION BATTERIES AND SUPERCAPACITORS. Eurasian Physical Technical Journal, 21(4(50), 14–22. https://doi.org/10.31489/2024No4/14-22

Issue

Section

Materials science
Loading...