INFLUENCE OF SPIRO-OMETAD FILM THICKNESS ON THE STRUCTURAL AND ELECTRICAL PROPERTIES OF PEROVSKITE SOLAR CELLS
DOI:
https://doi.org/10.31489/2024No4/23-34Keywords:
Perovskite solar cells, hole transport layer, Spiro-OMeTAD, conductive-AFM, current-voltage characteristics, impedance measurementsAbstract
This work investigates the effect of the hole transport layer (HTL) thickness of Spiro-OMeTAD on the electrical transport properties in perovskite solar cells (PSCs). Spiro-OMeTAD films were obtained by the spin-coating method at centrifuge rotation speeds from 2000 to 7000 rpm. The thickness and morphology of the Spiro-OMeTAD films were studied by atomic force microscopy (AFM). From the obtained AFM image data, an increase in the surface root mean square (rms) value is observed with decreasing film thickness. A decrease in film thickness leads to an increase in Energy gap (Eg) from 2.97 eV to 3.01 eV. We observe that at a layer thickness of 260 nm, the efficiency of the cells reaches its maximum value; further increasing the layer thickness reduces the efficiency. Analysis of the impedance spectra of PSCs showed that the optimal layer thickness reduces the HTL resistance and increases the recombination resistance at the perovskite/HTL interface, which increases the effective lifetime of charge carriers. Images of the surface and current distribution of Spiro-OMeTAD on the surface of the perovskite layer were studied. A non-uniform current distribution on the surface of the samples was revealed, the observed spots with high conductivity are interpreted as perovskite quantum dots, which have better photovoltaic characteristics.
References
Devadiga D., Nagaraja A.T., Devadiga Dh., Selvakumar M. (2024) Minireview and Perspectives of Liquid Crystals in Perovskite Solar Cells. Energy & Fuels, 38 (2), 854 - 868. DOI: 10.1021/acs.energyfuels.3c04050. DOI: https://doi.org/10.1021/acs.energyfuels.3c04050
Sha W.E.I., Ren X., Chen L., Choy W.C.H. (2015) The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett., 106, 221104. DOI: 10.1063/1.4922150. DOI: https://doi.org/10.1063/1.4922150
Saliba M., Correa-Baena J.-P., Gratzel M., Hagfeldt A., Abate A. (2018) Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angew. Chem., Int. Ed., 57, 2554–2569. DOI:10.1002/anie.201703226. DOI: https://doi.org/10.1002/anie.201703226
Aristidou N., Eames C., Sanchez-Molina I., Bu X., Kosco J., Islam M. S., Haque S.A. (2017) Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun., 8, 15218. DOI: 10.1038/ncomms15218. DOI: https://doi.org/10.1038/ncomms15218
Wolff C.M., Caprioglio P., Stolterfoht M., Neher D. (2019) Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces. Adv. Mater., 31, 1902762. DOI: 10.1002/adma.201902762.
Jeong J., Kim M., Seo J., Lu H., Ahlawat P., Mishra A., Yang Y., Hope M. A., Eickemeyer F.T., Kim M., Yoon Y. J., Choi I. W., Darwich B.P., Choi S. J., Jo Y., Lee J. H., Walker B., Zakeeruddin S.M., Emsley L., Rothlisberger U., Hagfeldt A., Kim D. S., Gra¨tzel M., Kim J.Y. (2021) Pseudo-halide anion engineering for a-FAPbI3 perovskite solar cells. Nature, 592, 381–385.DOI: 10.1038/s41586-021-03406-5. DOI: https://doi.org/10.1038/s41586-021-03406-5
Guan-Woo K., Hyuntae C., Minjun K., Lee J., Son S.Y., Park T. (2020) Hole transport materials in conventional structural (n-i-p) perovskite solar cells: from past to the future. Adv Energy Mater., DOI:10.1002/aenm.201903403. DOI: https://doi.org/10.1002/aenm.201903403
Jeyakumar R., Bag A., Nekovei R., Radhakrishnan R. (2019) Interface studies by simulation on methylammonium lead iodide based planar perovskite solar cells for high efficiency. Sol. Energy, 104-111. DOI:10.1016/j.solener.2019.07.097. DOI: https://doi.org/10.1016/j.solener.2019.07.097
Tumen-Ulzii G., Matsushima T., Adachi C. (2021) Mini-Review on Efficiency and Stability of Perovskite Solar Cells with Spiro-OMeTAD Hole Transport Layer: Recent Progress and Perspectives. Energy & Fuels, 35 (23), 18915-18927. DOI: 10.1021/acs.energyfuels.1c02190. DOI: https://doi.org/10.1021/acs.energyfuels.1c02190
Yoo J.J., Wieghold S., Sponseller M.C., Chua M. R., Bertram S.N., Hartono N.T.P., Tresback J.S., Hansen E.C., Correa-Baena J.-P., Bulovic´V., Buonassisi T., Shin S.S., Bawendi M.G. (2019) An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci., 12, 2192–2199. DOI:10.1039/C9EE00751B. DOI: https://doi.org/10.1039/C9EE00751B
Jiang Q., Zhao Y., Zhang X., Yang X., Chen Y., Chu Z., Ye Q., Li X., Yin Z., You J. (2019) Surface passivation of perovskite film for efficient solar cells. Nat. Photonics, 13, 460–466. DOI: 10.1038/s41566-019-0398-2. DOI: https://doi.org/10.1038/s41566-019-0398-2
Stolterfoht M., Caprioglio P., Wolff C., Ma´rquez Prieto J., Nordmann J., Zhang S., Rothhardt D., Ho¨rmann U., Amir Y., Redinger A., Kegelmann L., Zu F., Albrecht S., Koch N., Kirchartz T., Saliba M., Unold T., Neher D. (2019) The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci., 12, 2778–2788. DOI: 10.1039/C9EE02020A. DOI: https://doi.org/10.1039/C9EE02020A
Hawash Z., Ono L. K., Qi Y. (2018) Recent Advances in SpiroMeOTAD Hole Transport Material and Its Applications in Organic-Inorganic Halide Perovskite Solar Cells. Adv. Mater. Interfaces, 5, 1700623. DOI: 10.1002/admi.201700623. DOI: https://doi.org/10.1002/admi.201700623
Gelmetti, Montcada N., Pe´rez-Rodrı´guez A., Barrena E., Ocal C., Garcı´a-Benito I., Molina-Ontoria A., Martı´n N., Vidal-Ferran A., Palomares E. (2019) Energy Alignment and Recombination in Perovskite Solar Cells: Weighted Influence on the Open Circuit Voltage. Energy Environ. Sci., 12, 1309–1316. DOI: 10.1039/C9EE00528E. DOI: https://doi.org/10.1039/C9EE00528E
Wolff C.M., Caprioglio P., Stolterfoht M., Neher D. (2019) Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces. Adv. Mater., 31, 1902762. DOI: 10.1002/adma.201902762. DOI: https://doi.org/10.1002/adma.201902762
Wang J., Liu K., Ma L., Zhan X. (2016) Triarylamine: Versatile Platform for Organic, Dye-Sensitized, Perovskite Solar Cells. Chem. Rev., 116, 14675–14725. DOI: 10.1021/acs.chemrev.6b00432. DOI: https://doi.org/10.1021/acs.chemrev.6b00432
Le Corre V.M., Stolterfoht M., Perdigo´n Toro L., Feuerstein M., Wolff C., Gil-Escrig L., Bolink H. J., Neher D., Koster L. J. A. (2019) Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness. ACS Appl. Energy Mater., 2, 6280–6287. DOI:10.1021/acsaem.9b00856. DOI: https://doi.org/10.1021/acsaem.9b00856
Grill I., Aygu¨ler M. F., Bein T., Docampo P., Hartmann N. F., Handloser M., Hartschuh A. (2017) Charge Transport Limitations in Perovskite Solar Cells: The Effect of Charge Extraction Layers. ACS Appl. Mater. Interfaces, 9, 37655–37661. DOI: 10.1021/acsami.7b09567. DOI: https://doi.org/10.1021/acsami.7b09567
Stolterfoht M., Wolff C. M., Amir Y., Paulke A., Perdigon L., Caprioglio P., Neher D. (2017) Approaching the Fill Factor Shockley Queisser Limit in Stable, Dopant-Free Triple Cation Perovskite Solar Cells. Energy Environ. Sci., 10, 1530. DOI: 10.1039/C7EE00899F. DOI: https://doi.org/10.1039/C7EE00899F
Das A.K., Mandal R., Mandal D.K. (2022) Impact of HTM on Lead-free Perovskite Solar Cell with High Efficiency. Optical and Quantum Electronics, 07. DOI: 10.1007/s11082-022-03852-z. DOI: https://doi.org/10.21203/rs.3.rs-1366687/v1
Bag A., Radhakrishnan R., Nekovei R., Jeyakumar R. (2020) Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Solar Energy, 196, 177-182. DOI: 10.1016/j.solener.2019.12.014. DOI: https://doi.org/10.1016/j.solener.2019.12.014
Da Y., Xuan Y., Li Q. (2018) Quantifying energy losses in planar perovskite solar cells. Sol. Energy Mater. Sol. Cells, 174, 206–213. DOI: 10.1016/j.solmat.2017.09.002. DOI: https://doi.org/10.1016/j.solmat.2017.09.002
Aimukhanov А.К., Rozhkova X.S., Ilyassov B.R., Omarbekova G.I., Seisembekova T.E. (2022) Effect of alcohol solvents on the structural, optical and electrical characteristics of PEDOT:PSS polymer films annealed at low atmospheric pressure. Eurasian physical technical journal, 19, 2 (40), 35-41. DOI: 10.31489/2022No2/35-41. DOI: https://doi.org/10.31489/2022No2/35-41
Hedley G., Ward A., Alekseev A., Calvyn T., Howells E.R., Serrano L., Cooke G., Ruseckas A., Samuel I.D. (2013) Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. Nature Communications, 4, 2867. DOI: 10.1038/ncomms3867. DOI: https://doi.org/10.1038/ncomms3867
Han R., Zhao Q., Hazarika A., Li J., Cai H., Ni J., Zhang J. (2022) Ionic Liquids Modulating CsPbI3 Colloidal Quantum Dots Enable Improved Mobility for High-Performance Solar Cells. ACS Appl. Nano Mater., 5, 10, 14092–14132. DOI: 10.1021/acsami.1c20274. DOI: https://doi.org/10.1021/acsami.1c20274
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.