INFLUENCE OF SPIRO-OMETAD FILM THICKNESS ON THE STRUCTURAL AND ELECTRICAL PROPERTIES OF PEROVSKITE SOLAR CELLS

INFLUENCE OF SPIRO-OMETAD FILM THICKNESS ON THE STRUCTURAL AND ELECTRICAL PROPERTIES OF PEROVSKITE SOLAR CELLS

Authors

DOI:

https://doi.org/10.31489/2024No4/23-34

Keywords:

Perovskite solar cells, hole transport layer, Spiro-OMeTAD, conductive-AFM, current-voltage characteristics, impedance measurements

Abstract

This work investigates the effect of the hole transport layer (HTL) thickness of Spiro-OMeTAD on the electrical transport properties in perovskite solar cells (PSCs).  Spiro-OMeTAD films were obtained by the spin-coating method at centrifuge rotation speeds from 2000 to 7000 rpm. The thickness and morphology of the Spiro-OMeTAD films were studied by atomic force microscopy (AFM). From the obtained AFM image data, an increase in the surface root mean square (rms) value is observed with decreasing film thickness. A decrease in film thickness leads to an increase in Energy gap (Eg) from 2.97 eV to 3.01 eV.  We observe that at a layer thickness of 260 nm, the efficiency of the cells reaches its maximum value; further increasing the layer thickness reduces the efficiency. Analysis of the impedance spectra of PSCs showed that the optimal layer thickness reduces the HTL resistance and increases the recombination resistance at the perovskite/HTL interface, which increases the effective lifetime of charge carriers. Images of the surface and current distribution of Spiro-OMeTAD on the surface of the perovskite layer were studied. A non-uniform current distribution on the surface of the samples was revealed, the observed spots with high conductivity are interpreted as perovskite quantum dots, which have better photovoltaic characteristics.

Author's detail

S.K. Tazhibayev

Tazhibayev, Serzhan Kozhanuly – Master (Sci.), Senior lecturer, E.A. Buketov Karaganda University, Karaganda, Kazakhstan. Scopus Author ID: 58170071100; ORCID iD: 0000-0001-9059-2975: tazh1981@gmail.com

A.M. Alekseev

Alekseev, Alexander Mikhailovich – Candidate of Phys. and Math. Sciences, Lead engineer, Kazan Federal University, Kazan, Russia. Scopus Author ID: 55286055800, ORCID iD: 0000-0002-2800-6047; alalrus@gmail.com

A.K. Aimukhanov

Aimukhanov, Aitbek Kalievich – Candidate of Phys. and Math. Sciences, Professor, E.A. Buketov Karaganda University, Karaganda, Kazakhstan. Scopus Author ID: 58493008700, ORCID iD: 0000-0002-4384-5164, a_k_aitbek@mail.ru

B.R. Ilyassov

Ilyassov, Baurzhan Rashidovich – PhD, Associate Professor, Astana IT University, Expo C1, Astana, Kazakhstan. Scopus Author ID: 56669724700; ORCID iD: 0000-0003-4563-2004; baurdinho@mail.ru

M.K. Beisembekov

Beisembekov, Meirkhan KurmangazyulyMaster, E.A. Buketov Karaganda University,  Karaganda, Kazakhstan. Scopus Author ID: 58984780800; ORCID iD: 0000-0003-2788-1699; baiboldy_han@mail.ru

X.S. Rozhkova

Rozhkova, Xenia Sergeevna – PhD, Senior Lecturer, E.A. Buketov Karaganda University, Karaganda, Kazakhstan. Scopus Author ID: 57219053347; ORCID iD: 0000-0003-3048-6171;  ksusharogovaya@mail.ru

A.K. Mussabekova

Mussabekova, Assel KanatkyzyMaster (Eng.), Senior Lecturer, E.A. Buketov Karaganda University, Karaganda, Kazakhstan. Scopus Author ID: 58429663700, ORCID iD: 0000-0003-3452-4622; assel501vremennyi@mail.ru

A.K. Zeinidenov

Zeinidenov, Assylbek Kalkenovich – PhD, Professor, E.A. Buketov Karaganda University, Karaganda, Kazakhstan. Scopus Author ID: 56386144000; ORCID iD: 0000-0001-9232-8406; asyl-zeinidenov@mail.ru

References

Devadiga D., Nagaraja A.T., Devadiga Dh., Selvakumar M. (2024) Minireview and Perspectives of Liquid Crystals in Perovskite Solar Cells. Energy & Fuels, 38 (2), 854 - 868. DOI: 10.1021/acs.energyfuels.3c04050. DOI: https://doi.org/10.1021/acs.energyfuels.3c04050

Sha W.E.I., Ren X., Chen L., Choy W.C.H. (2015) The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett., 106, 221104. DOI: 10.1063/1.4922150. DOI: https://doi.org/10.1063/1.4922150

Saliba M., Correa-Baena J.-P., Gratzel M., Hagfeldt A., Abate A. (2018) Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angew. Chem., Int. Ed., 57, 2554–2569. DOI:10.1002/anie.201703226. DOI: https://doi.org/10.1002/anie.201703226

Aristidou N., Eames C., Sanchez-Molina I., Bu X., Kosco J., Islam M. S., Haque S.A. (2017) Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun., 8, 15218. DOI: 10.1038/ncomms15218. DOI: https://doi.org/10.1038/ncomms15218

Wolff C.M., Caprioglio P., Stolterfoht M., Neher D. (2019) Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces. Adv. Mater., 31, 1902762. DOI: 10.1002/adma.201902762.

Jeong J., Kim M., Seo J., Lu H., Ahlawat P., Mishra A., Yang Y., Hope M. A., Eickemeyer F.T., Kim M., Yoon Y. J., Choi I. W., Darwich B.P., Choi S. J., Jo Y., Lee J. H., Walker B., Zakeeruddin S.M., Emsley L., Rothlisberger U., Hagfeldt A., Kim D. S., Gra¨tzel M., Kim J.Y. (2021) Pseudo-halide anion engineering for a-FAPbI3 perovskite solar cells. Nature, 592, 381–385.DOI: 10.1038/s41586-021-03406-5. DOI: https://doi.org/10.1038/s41586-021-03406-5

Guan-Woo K., Hyuntae C., Minjun K., Lee J., Son S.Y., Park T. (2020) Hole transport materials in conventional structural (n-i-p) perovskite solar cells: from past to the future. Adv Energy Mater., DOI:10.1002/aenm.201903403. DOI: https://doi.org/10.1002/aenm.201903403

Jeyakumar R., Bag A., Nekovei R., Radhakrishnan R. (2019) Interface studies by simulation on methylammonium lead iodide based planar perovskite solar cells for high efficiency. Sol. Energy, 104-111. DOI:10.1016/j.solener.2019.07.097. DOI: https://doi.org/10.1016/j.solener.2019.07.097

Tumen-Ulzii G., Matsushima T., Adachi C. (2021) Mini-Review on Efficiency and Stability of Perovskite Solar Cells with Spiro-OMeTAD Hole Transport Layer: Recent Progress and Perspectives. Energy & Fuels, 35 (23), 18915-18927. DOI: 10.1021/acs.energyfuels.1c02190. DOI: https://doi.org/10.1021/acs.energyfuels.1c02190

Yoo J.J., Wieghold S., Sponseller M.C., Chua M. R., Bertram S.N., Hartono N.T.P., Tresback J.S., Hansen E.C., Correa-Baena J.-P., Bulovic´V., Buonassisi T., Shin S.S., Bawendi M.G. (2019) An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci., 12, 2192–2199. DOI:10.1039/C9EE00751B. DOI: https://doi.org/10.1039/C9EE00751B

Jiang Q., Zhao Y., Zhang X., Yang X., Chen Y., Chu Z., Ye Q., Li X., Yin Z., You J. (2019) Surface passivation of perovskite film for efficient solar cells. Nat. Photonics, 13, 460–466. DOI: 10.1038/s41566-019-0398-2. DOI: https://doi.org/10.1038/s41566-019-0398-2

Stolterfoht M., Caprioglio P., Wolff C., Ma´rquez Prieto J., Nordmann J., Zhang S., Rothhardt D., Ho¨rmann U., Amir Y., Redinger A., Kegelmann L., Zu F., Albrecht S., Koch N., Kirchartz T., Saliba M., Unold T., Neher D. (2019) The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci., 12, 2778–2788. DOI: 10.1039/C9EE02020A. DOI: https://doi.org/10.1039/C9EE02020A

Hawash Z., Ono L. K., Qi Y. (2018) Recent Advances in SpiroMeOTAD Hole Transport Material and Its Applications in Organic-Inorganic Halide Perovskite Solar Cells. Adv. Mater. Interfaces, 5, 1700623. DOI: 10.1002/admi.201700623. DOI: https://doi.org/10.1002/admi.201700623

Gelmetti, Montcada N., Pe´rez-Rodrı´guez A., Barrena E., Ocal C., Garcı´a-Benito I., Molina-Ontoria A., Martı´n N., Vidal-Ferran A., Palomares E. (2019) Energy Alignment and Recombination in Perovskite Solar Cells: Weighted Influence on the Open Circuit Voltage. Energy Environ. Sci., 12, 1309–1316. DOI: 10.1039/C9EE00528E. DOI: https://doi.org/10.1039/C9EE00528E

Wolff C.M., Caprioglio P., Stolterfoht M., Neher D. (2019) Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces. Adv. Mater., 31, 1902762. DOI: 10.1002/adma.201902762. DOI: https://doi.org/10.1002/adma.201902762

Wang J., Liu K., Ma L., Zhan X. (2016) Triarylamine: Versatile Platform for Organic, Dye-Sensitized, Perovskite Solar Cells. Chem. Rev., 116, 14675–14725. DOI: 10.1021/acs.chemrev.6b00432. DOI: https://doi.org/10.1021/acs.chemrev.6b00432

Le Corre V.M., Stolterfoht M., Perdigo´n Toro L., Feuerstein M., Wolff C., Gil-Escrig L., Bolink H. J., Neher D., Koster L. J. A. (2019) Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness. ACS Appl. Energy Mater., 2, 6280–6287. DOI:10.1021/acsaem.9b00856. DOI: https://doi.org/10.1021/acsaem.9b00856

Grill I., Aygu¨ler M. F., Bein T., Docampo P., Hartmann N. F., Handloser M., Hartschuh A. (2017) Charge Transport Limitations in Perovskite Solar Cells: The Effect of Charge Extraction Layers. ACS Appl. Mater. Interfaces, 9, 37655–37661. DOI: 10.1021/acsami.7b09567. DOI: https://doi.org/10.1021/acsami.7b09567

Stolterfoht M., Wolff C. M., Amir Y., Paulke A., Perdigon L., Caprioglio P., Neher D. (2017) Approaching the Fill Factor Shockley Queisser Limit in Stable, Dopant-Free Triple Cation Perovskite Solar Cells. Energy Environ. Sci., 10, 1530. DOI: 10.1039/C7EE00899F. DOI: https://doi.org/10.1039/C7EE00899F

Das A.K., Mandal R., Mandal D.K. (2022) Impact of HTM on Lead-free Perovskite Solar Cell with High Efficiency. Optical and Quantum Electronics, 07. DOI: 10.1007/s11082-022-03852-z. DOI: https://doi.org/10.21203/rs.3.rs-1366687/v1

Bag A., Radhakrishnan R., Nekovei R., Jeyakumar R. (2020) Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Solar Energy, 196, 177-182. DOI: 10.1016/j.solener.2019.12.014. DOI: https://doi.org/10.1016/j.solener.2019.12.014

Da Y., Xuan Y., Li Q. (2018) Quantifying energy losses in planar perovskite solar cells. Sol. Energy Mater. Sol. Cells, 174, 206–213. DOI: 10.1016/j.solmat.2017.09.002. DOI: https://doi.org/10.1016/j.solmat.2017.09.002

Aimukhanov А.К., Rozhkova X.S., Ilyassov B.R., Omarbekova G.I., Seisembekova T.E. (2022) Effect of alcohol solvents on the structural, optical and electrical characteristics of PEDOT:PSS polymer films annealed at low atmospheric pressure. Eurasian physical technical journal, 19, 2 (40), 35-41. DOI: 10.31489/2022No2/35-41. DOI: https://doi.org/10.31489/2022No2/35-41

Hedley G., Ward A., Alekseev A., Calvyn T., Howells E.R., Serrano L., Cooke G., Ruseckas A., Samuel I.D. (2013) Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells. Nature Communications, 4, 2867. DOI: 10.1038/ncomms3867. DOI: https://doi.org/10.1038/ncomms3867

Han R., Zhao Q., Hazarika A., Li J., Cai H., Ni J., Zhang J. (2022) Ionic Liquids Modulating CsPbI3 Colloidal Quantum Dots Enable Improved Mobility for High-Performance Solar Cells. ACS Appl. Nano Mater., 5, 10, 14092–14132. DOI: 10.1021/acsami.1c20274. DOI: https://doi.org/10.1021/acsami.1c20274

Downloads

Received

2024-07-22

Revised

2024-11-14

Accepted

2024-12-13

Published online

2024-12-25

How to Cite

Tazhibayev, S., Alekseev, A., Aimukhanov, A., Ilyassov, B., Beisembekov, M., Rozhkova, X., Mussabekova, A., & Zeinidenov, A. (2024). INFLUENCE OF SPIRO-OMETAD FILM THICKNESS ON THE STRUCTURAL AND ELECTRICAL PROPERTIES OF PEROVSKITE SOLAR CELLS. Eurasian Physical Technical Journal, 21(4(50), 23–34. https://doi.org/10.31489/2024No4/23-34

Issue

Section

Materials science

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

Loading...