SIMULATION OF CONDITIONS FOR ACHIEVING HIGH ELECTRICAL POWER AND EFFICIENCY IN A STIRLING ENGINE WITH A FREE WORKING PISTON
DOI:
https://doi.org/10.31489/2024No4/49-60Keywords:
free-piston Stirling engine, regenerator, displacer, efficiencyAbstract
A simulation of the Stirling engine was carried out, where the temperature variability in the cooler and heater is taken into account, and the engine itself generates electric current. The study was carried out in the temperature range when the piston and displacer move synchronously. The possibility of increasing engine power by reducing hydraulic resistance in the regenerator is shown. It was also discovered that as the electrical load on the generator increases, the work produced by the engine can also increase. This indicates that there is a maximum of electrical energy production depending on the load. The increased rigidity of the displacer spring contributes to an increase in engine power and its efficiency.
References
Ruihua Chen, Weicong Xu , Shuai Deng, Ruikai Zha, Siyoung Q. Choi, Li Zhao. (2023) Towards the Carnot efficiency with a novel electrochemical heat engine based on the Carnot cycle: Thermodynamic considerations. Energy, 284, 128577. DOI: 10.1016/j.energy.2023.128577. DOI: https://doi.org/10.1016/j.energy.2023.128577
Xu W, Deng S, Zhao L, Zhang Y, Li S. (2019) Performance analysis on novel thermodynamic cycle under the guidance of 3D construction method. Applied Energy, 250, 478 – 492. DOI: 10.1016/j.apenergy.2019.05.081.
Sabdenov K.O. (2021) The Thermodynamic Brayton Cycle with a Reversible Chemical Reaction. Technical Physics, 66, 1275 – 1283. Available at: https://link.springer.com/article/10.1134/S1063784221090164. DOI: https://doi.org/10.1134/S1063784221090164
Sabdenov K. (2023) The Thermodynamics Cycles with a Reversible Chemical Reaction. Americ. Journ. Mod. Phys. (AJMP), 12, 2, 14 – 20. Available at: http://ajmp.org/article/10.11648/j.ajmp.20231202.11 DOI: https://doi.org/10.11648/j.ajmp.20231202.11
Walker G. (1973) Stirling-cycle machines. Clarendon Press, Oxford, 156. Available at: https://www.amazon.com/Stirling-Cycle-Machines-Graham-Walker/dp/0198561121.
Reader G.T., Hooper Ch. (1982) Stirling engines, 424. Spon Press. Available at: https://www.abebooks.co.uk/9780419124009/Stirling-Engines-Reader-G.T-Hooper-0419124004/plp
Valenti G., Campanari S., Silva P., Ravida A., Macchi E., Bischi A. (2015) On-off cyclic testing of a micro-cogeneration Stirling unit. Energy Procedia, 75, 1197–1201. Available at: https://www.researchgate.net/publication/281373930_On-off_Cyclic_Testing_of_a_Micro-cogeneration_Stirling_Unit DOI: https://doi.org/10.1016/j.egypro.2015.07.152
Sabdenov K.O., Erzada M., Suleimenov A.T. (2019) The Possibility of Converting Energy in Space with the Aid of a Chain Heat Machine Operating on Methane and Nitrogen. Journ. Eng. Phys. Therm., 92, 3, 574-584. Available at: https://link.springer.com/article/10.1007/s10891-019-01965-z#citeas DOI: https://doi.org/10.1007/s10891-019-01965-z
Konyukhov G.V., Bukharov A.V., Konyukhov V.G. (2020) On the Problem of Rejection of Low-Potential Heat from High-Power Space Systems. Journ. Eng. Phys. Therm., 93, 16–27. Available at: https://doi.org/10.1007/s10891-020-02086-8 DOI: https://doi.org/10.1007/s10891-020-02086-8
Vikulov A.G., Morzhukhina A.V. (2021) Controlling the Power of the Internal Heat Sources of Space Vehicles. Jour. Eng. Phys. Therm., 94, 1101–1109. DOI: 10.1007/s10891-021-02390-x. DOI: https://doi.org/10.1007/s10891-021-02390-x
Xu W, Deng S, Zhao L, Zhang Y, Li S. (2019) Performance analysis on novel thermodynamic cycle under the guidance of 3D construction method. Applied Energy, 250, 478-492. DOI: 10.1016/j.apenergy.2019.05.081. DOI: https://doi.org/10.1016/j.apenergy.2019.05.081
Jenkins N., Ekanayake J.B., and Strbac G. (2010) Distributed Generation. The Institution of Engineering and Technology, London. Available at: https://web.nit.ac.ir/~shahabi.m/M.Sc%20and%20PhD%20materials/DGs%20and%20MicroGrids %20Course/Books/Distributed%20Generation%20by%20N.Jenkins%20IET%20press/Distributed.pdf.
Dulau L. I., Abrudean M., Bica D. (2014) Effects of Distributed Generation on Electric Power Systems. Procedia Technology, 12, 681–686. Available at: https://www.researchgate.net/publication/270916389_Effects_of_Distributed DOI: https://doi.org/10.1016/j.protcy.2013.12.549
Langlois, Justin L.R. (2006) Dynamic computer model of a Stirling space nuclear power system. Trident Scholar project report no. 345. Annapolis, US Naval Academy. Available at: https://www.semantic scholar.org/paper/Dynamic-Computer-Model-of-a-Stirling-Space-NuclearLanglois/0e513dee372464b9d6807efb9717e 934af1c4df1
Sabdenov K.O. (2024) A simple model of a Stirling machine (engine) with a free working piston. Journ. Eng. Phys. Therm., 97, 4. P. 1034-1041. DOI: 10.1007/s10891-024-02974-3. DOI: https://doi.org/10.1007/s10891-024-02974-3
Zhiwen Dai, Chenglong Wang, Dalin Zhang, Wenxi Tian, Suizheng Qiu, G.H. Su. (2021) Design and analysis of a free-piston Stirling engine for space nuclear power reactor. Nucl. Eng. Techn., 53, 2, 637–646. DOI:10.1016/j.net.2020.07.011. DOI: https://doi.org/10.1016/j.net.2020.07.011
Fr. Catapano, C. Perozziello, B. M. Vaglieco. (2021) Heat transfer of a Stirling engine for waste heat recovery application from internal combustion engines. Appl. Therm. Eng., 198, 5, 117492. DOI:10.1016/j.applthermaleng.2021.117492. DOI: https://doi.org/10.1016/j.applthermaleng.2021.117492
Ukhin B.V., Gusev A. A. (2010) Hydraulics. Moscow, 432. Available at: https://www.ibooks.ru/products/360607? Category id=12968 [in Russian]
Kalitkin N.N. (2011) Numerical methods. Moscow, 592. Available at: https://bhv.ru/wp-content/uploads/wpallimport/ filespdfk i/view_1768_978-5-9775-5000.pdf?srsltid=AfmBOoq6JfthMR60no 1rnchXvS2xar [in Russian]
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.