DETERMINATION OF THE FLOW RATE AND TEMPERATURE OF THE LIQUID WHEN IT IS FORCED THROUGH THE THROTTLE OPENINGS
DOI:
https://doi.org/10.31489/2024No4/109-117Keywords:
liquid flow rate, throttle openings, hydraulic heating systems, thermal energy conversionAbstract
The article presents laboratory findings from studies conducted on a specially developed setup for analyzing liquid flow through throttle holes. The liquid flow rate depends on various factors, such as hole diameter, upstream pressure, liquid viscosity, and the channel’s length and shape. As the liquid passes through the throttle, pressure drops, velocity increases, and kinetic energy rises, subsequently converting to thermal energy due to molecular friction. This throttling process raises the liquid’s temperature, making it suitable for heating applications in industrial, laboratory, and heating systems. This throttling process increases the liquid's temperature through molecular friction, making it a practical solution for heating applications across industrial and laboratory systems.
References
Concept of Transition to a "Green Economy" in the Republic of Kazakhstan. Available at: http://strategy2050.kz [in Russian].
Trukhniy A.D., Povarov O.A., Izyumov M.A. (2011) Basics of Modern Energy. Volume 1. Modern Heat Energy: A Textbook for Higher Educational Institutions. Moscow: Publishing House of the Moscow Power Engineering Institute, 472 p. Available at: http://nt-mpei.ru/biblio/osnovy-sovremennoy-energetiki-1/ [in Russian].
Tergemes K.T., Duisembaev M.S. (2014) Vortex heat generator with an adjustable energy conversion coefficient for heating farm-houses. Research, results. Available at: https://articlekz.com/article/126542.
Guo G., Lu K., Xu S., Yuan J., Bai T., Yang K., He Z. (2023) Effects of in-nozzle liquid fuel vortex cavitation on characteristics of flow and spray: Numerical research. International Communications in Heat and Mass Transfer, 148, 107040. DOI: 10.1016/j.icheatmasstransfer.2023.107040. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2023.107040
Usychenko V.G. (2012) The Ranque effect as a self-organization phenomenon. Technical Physics, 57(3), 379–385. DOI: 10.1134/s1063784212030164. DOI: https://doi.org/10.1134/S1063784212030164
Aghakashi V., Saidi M.H. (2018) Turbulent Decaying Swirling Flow in a Pipe. Heat Transfer Research, 49(16), 1559–1585. DOI: 10.1615/HeatTransRes.2018021519. DOI: https://doi.org/10.1615/HeatTransRes.2018021519
Patent RU №2415350. Cavitation-Vortex Heat Generator / Kovrizhkin M.G. IPC: F24J 3/00, published on March 27, 2011. Available at: https://patents.s3.yandex.net/RU2415350C1_20110327.pdf [in Russian].
Mujtaba M., Cuntang W., Yasin F.M., Fangwei X. (2018) Throttle Valve as a Heating Element in Wind Hydraulic Thermal System. Journal of Advance Research in Mechanical and Civil Engineering, 5(2), 01-08. DOI:10.53555/nnmce.v5i2.304. DOI: https://doi.org/10.53555/nnmce.v5i2.304
Mohammad A.A., Good I.A., Titov M.A., Kulikova N.P. (2015) Calculation of a Throttle Device for Heating a Hydraulic Fluid with Automatic Control Depending on Temperature. Vestnik KrasGAU, 12, 38–44. Available at: https://cyberleninka.ru/article/n/raschyot-drosselnogo-ustroystva-razogreva-rabochey-zhidkosti-gidrop [in Russian].
Shumilov I.S. (2016) Fluid Temperature of Aero Hydraulic Systems. Machines and Plants: Design and Exploiting, MSTU N.E. Bauman, 16, 2. DOI: 10.7463/aplts.0216.0837432. DOI: https://doi.org/10.7463/aplts.0216.0837432
Marinin M.G., Mosalev S.M., Naumov V.I., Sysa V.P., (2009) Throttle Type Heat Generator, RF Patent RU2357161C1, filed November 6, 2007, issued May 27. DOI: 10.1615/HeatTransRes.2022038753. DOI: https://doi.org/10.1615/HeatTransRes.2022038753
Nussupbekov B., Oshanov Y., Ovcharov M., Duisenbayeva M., Sharzadin A., Kongyrbayeva A., Amanzholova M. (2024) The influence of the rotor shape on the efficiency of the hydrodynamic heater. Eastern-European Journal of Enterprise Technologies, 4, 8(130), 42–49. DOI: 10.15587/1729-4061.2024.310140. DOI: https://doi.org/10.15587/1729-4061.2024.310140
Nussupbekov B., Oshanov Y., Ovcharov M., Kutum B., Duisenbayeva M., Kongyrbayeva A. (2023) Identifying regularities of fluid throttling of an inertial hydrodynamic installation. Eastern-European Journal of Enterprise Technologies, 6(7), 26–32. DOI: 10.15587/1729-4061.2023.292522. DOI: https://doi.org/10.15587/1729-4061.2023.292522
Nussupbekov B., Khassenov A., Nussupbekov U., Akhmadiyev B., Karabekova D., Kutum B., Tanasheva N. (2022) Development of technology for obtaining coal-water fuel. Eastern-European Journal of Enterprise Technologies, 3(8), 39–46. DOI: 10.15587/1729-4061.2022.259734. DOI: https://doi.org/10.15587/1729-4061.2022.259734
Bashta T.M. (1971) Mechanical Engineering Hydraulics. Mechanical Engineering, 672 p. Available at: https://lib-bkm.ru/10007 [in Russian].
Grishin N.S., Ponikarov I.I., Ponikarov S.I., Grishin D.N. (2012) Extraction in a Field of Variable Forces. Hydrodynamics, Mass Transfer, Apparatus (Theory, Designs and Calculations). Part 1., 468. Available at: https://e.lanbook.com/book/73493 [in Russian].
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.