ANALYTICAL SOLUTION OF THE CLASS OF INVERSELY QUADRATIC YUKAWA POTENTIAL WITH APPLICATION TO QUANTUM MECHANICAL SYSTEMS
DOI:
https://doi.org/10.31489/2024No4/118-130Keywords:
Schrödinger equation, Exact Quantization Rule, Homonuclear diatomic molecules, Heavy mesons, Class of Inversely Quadratic Yukawa potentialAbstract
In our study, we applied the Exact Quantization Rule approach to tackle the radial Schrödinger equation analytically, specifically addressing the class of inversely quadratic Yukawa potential. Through this method, we successfully predicted the mass spectra of heavy mesons, including charmonium and bottomonium, across a range of quantum states by leveraging the energy eigenvalues. When compared to experimental data and other researchers' findings, our model exhibited a remarkable degree of accuracy, with a maximum error of .We reduced our potential model to the Kratzer potential in order to further expedite our computations, and we ensured mathematical accuracy by imposing particular boundary conditions. By utilizing the acquired energy spectrum, we broadened our examination to investigate the energy spectra of homonuclear diatomic molecules, like nitrogen (N2) and hydrogen (H2). One remarkable finding was that the energy spectrum reduced as the angular momentum quantum number increased in the case where the principal quantum number stayed fixed. In a similar vein, the energy spectrum consistently decreases when the angular momentum quantum number is varied. The complex interaction between the kinetic and potential energies of the electron causes this decreasing trend in the energy spectrum as the angular momentum quantum number increases in a diatomic molecule. The energy spectrum is systematically reduced as the electron's orbit lengthens and its distance from the nucleus increases, shifting the balance between these energies.
References
Inyang E.P., Ayedun F., Ibanga E.A., Lawal K.M., Okon I. B., William E.S., Ekwevugbe O., Onate C.A., Antia A. D., Obisung E. O. (2022) Analytical Solutions of the N-Dimensional Schrödinger equation with modified screened Kratzer plus Inversely Quadratic Yukawa potential and Thermodynamic Properties of selected Diatomic Molecules. Results in Physics, 43, 106075. DOI:10.1016/j.rinp.2022.106075. DOI: https://doi.org/10.1016/j.rinp.2022.106075
Inyang E.P., Ali N., Endut R., Aljunid S.A. (2024) Energy Spectra, Expectation Values, and Thermodynamic Properties of HCl And LiH Diatomic Molecules. Eurasian Physical Technical Journal, 21, 1(47), 124 – 137. DOI:10.31489/2024No1/124-137. DOI: https://doi.org/10.31489/2024No1/124-137
Inyang E. P., Ntibi J.E., Obisung E.O., William E.S., Ibekwe E.E., Akpan I.O., Inyang E.P. (2022) Expectation Values and Energy Spectra of the Varshni Potential in Arbitrary Dimensions. Jordan Journal of Physics, 5, 495 – 509. DOI: 10.47011/15.5.7. DOI: https://doi.org/10.47011/15.5.7
Kumar R., Chand F. (2013) Asymptotic study to the N-dimensional radial Schrödinger equation for the quark-antiquark system. Communications in Theoretical Physics, 59(5), 528. DOI: 10.1088/0253-6102/59/5/02. DOI: https://doi.org/10.1088/0253-6102/59/5/02
Mutuk H. (2018) Mass Spectra and Decay constants of Heavy-light Mesons: A case study of QCD sum Rules and Quark model. Advances in High Energy Physics, 2018. DOI: 10.1155/2018/8095653. DOI: https://doi.org/10.1155/2018/8095653
William E.S., Inyang S.O., Ekerenam O.O., Inyang E.P., Okon I.B., Okorie U.S., Ita B.I., Akpan I.O., Ikot A.N. (2024) Theoretic analysis of non-relativistic equation with the Varshni-Eckart potential model in cosmic string topological defects geometry and external fields for the selected diatomic molecules. Molecular Physics, 122(3), e2249140. DOI: 10.1080/00268976.2023.2249140. DOI: https://doi.org/10.1080/00268976.2023.2249140
Hassanabadi S., Rajabi A.A., Zarrinkamar S. (2012) Cornell and kratzer potentials within the semirelativistic treatment. Modern Physics Letters A, 27(10), 1250057. DOI: 10.1142/S0217732312500575. DOI: https://doi.org/10.1142/S0217732312500575
Vega A., Flores J. (2016) Heavy quarkonium properties from Cornell potential using variational method and supersymmetric quantum mechanics. Pramana, 87, 1-7. DOI: 10.1007/s12043-016-1278-7. DOI: https://doi.org/10.1007/s12043-016-1278-7
Ciftci H., Kisoglu H.F. (2018) Nonrelativistic-Arbitrary l-states of quarkonium through Asymptotic Iteration method. Advances in High Energy Physics, 4549705. DOI: 10.1155/2018/4549705. DOI: https://doi.org/10.1155/2018/4549705
Carrington M.E., Czajka A., Mrówczyński S. (2020) Heavy quarks embedded in glasma. Nuclear Physics A, 1001, 121914. DOI: 10.1016/j.nuclphysa.2020.121914. DOI: https://doi.org/10.1016/j.nuclphysa.2020.121914
Allosh M., Mustafa Y., Khalifa Ahmed N., Sayed Mustafa A. (2021) Ground and Excited state mass spectra and properties of heavy-light mesons. Few-Body Systems, 62(2), 26. DOI: 10.1007/s00601-021-01608-1. DOI: https://doi.org/10.1007/s00601-021-01608-1
Rani R., Bhardwaj S.B., Chand F. (2018) Mass spectra of heavy and light mesons using asymptotic iteration method. Communications in Theoretical Physics, 70(2), 179. DOI: 10.1088/0253-6102/70/2/179. DOI: https://doi.org/10.1088/0253-6102/70/2/179
Abu-Shady M., Khokha E.M. (2018) Heavy-light mesons in the nonrelativistic quark model using laplace transformation method. Advances in high energy physics, 2018. DOI: 10.1155/2018/7032041. DOI: https://doi.org/10.1155/2018/7032041
Abu-Shady M., Inyang, E.P. (2022) Heavy-meson masses in the framework of trigonometric Rosen-Morse potential using the generalized fractional Derivative. arXiv preprint arXiv:2209.00566. DOI: 10.26565/2312-4334-2022-4-06. DOI: https://doi.org/10.26565/2312-4334-2022-4-06
Inyang E.P., Obisung E.O., Amajama J., Bassey D.E., William E.S., Okon I.B. (2022) The Effect of Topological Defect on The Mass Spectra of Heavy and Heavy-Light Quarkonia. Eurasian Physical Technical Journal, 9, 4(42), 78 – 87. DOI: 10.31489/2022No4/78-87. DOI: https://doi.org/10.31489/2022No4/78-87
Ikot A.N., Obagboye L.F., Okorie U.S., Inyang E.P., Amadi P.O., Abdel-Aty A. (2022) Solutions of Schrodinger equation with generalized Cornell potential (GCP) and its applications to diatomic molecular systems in D-dimensions using Extended Nikiforov–Uvarov (ENU) formalism. The European Physical Journal Plus, 137, 1370 DOI:10.1140/epjp/s13360-022-03590-x. DOI: https://doi.org/10.1140/epjp/s13360-022-03590-x
Omugbe E., Eyube E.S., Onate C.A., Njoku I.J., Jahanshir A., Inyang E.P., Emeje K.O. (2024) Nonrelativistic energy equations for diatomic molecules constrained in a deformed hyperbolic potential function. Journal of Molecular Modeling, 30(3), 1-10. DOI: 10.1007/s00894-024-05855-x. DOI: https://doi.org/10.1007/s00894-024-05855-x
Purohit K.R., Jakhad P., Rai A.K. (2022) Quarkonium spectroscopy of the linear plus modified Yukawa potential. Physica Scripta, 97(4), 044002. DOI: 10.1088/1402-4896/ac5bc2. DOI: https://doi.org/10.1088/1402-4896/ac5bc2
Purohit K.R., Rai A.K., Parmar R.H. (2023) Spectroscopy of heavy-light mesons (cs¯, cq¯, bs¯, bq¯) for the linear plus modified Yukawa potential using Nikiforov–Uvarov method. Indian Journal of Physics, 1-13. DOI:10.1007/s12648-023-02852-3. DOI: https://doi.org/10.1007/s12648-023-02852-3
Inyang E.P., Inyang E.P., Akpan I.O., Ntibi J.E., William E.S. (2021) Masses and thermodynamic properties of a Quarkonium system. Canadian Journal Physics, 99, 982 – 990. DOI: 10.1139/cjp-2020-0578. DOI: https://doi.org/10.1139/cjp-2020-0578
Inyang E.P., Inyang E.P., Ntibi J. E., Ibekwe E. E., William E. S. (2021) Approximate solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method. Indian Journal of Physics, 95, 2733 - 2739. DOI: 10.1007/s12648-020-01933-x. DOI: https://doi.org/10.1007/s12648-020-01933-x
Ibekwe E.E., Okorie U.S., Emah J.B., Inyang E.P., Ekong S.A. (2021) Mass spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series expansion method. European Physical Journal Plus, 87, 1- 11. DOI:10.1140/epjp/s13360-021-01090-y. DOI: https://doi.org/10.1140/epjp/s13360-021-01090-y
Akpan I.O., Inyang E.P., William E.S. (2021) Approximate solutions of the Schrödinger equation with Hulthen-Hellmann Potentials for a Quarkonium system. Revista mexicana de física, 67(3), 482-490. DOI:10.31349/revmexfis.67.482. DOI: https://doi.org/10.31349/RevMexFis.67.482
Inyang E.P., Inyang E.P., William E.S. (2021). Study on the applicability of Varshni potential to predict the mass-spectra of the Quark-Antiquark systems in a non-relativistic framework. Jordan Journal of Physics, 14(4), 339-347. DOI: 10.47011/14.4.8. DOI: https://doi.org/10.47011/14.4.8
Patrick I.E., Joseph N., Akpan I.E., Funmilayo A., Peter I.E., Sunday W.E. (2023). Thermal properties, mass spectra and root mean square radii of heavy quarkonium system with class of inversely quadratic Yukawa potential. In AIP Conference Proceedings, AIP Publishing, 2679, 1. DOI: 10.1063/5.0112829. DOI: https://doi.org/10.1063/5.0112829
Grinstein B. (2000) A modern introduction to quarkonium theory. International Journal of Modern Physics A, 15(04), 461-495. DOI: 10.1142/S0217751X00000227. DOI: https://doi.org/10.1142/S0217751X00000227
Lucha W., Schöberl F. F., Gromes D. (1991). Bound states of quarks. Physics reports, 200(4), 127-240. DOI:10.1016/0370-1573(91)90001-3. DOI: https://doi.org/10.1016/0370-1573(91)90001-3
Ma Z.Q., Xu B.W. (2005) Quantum correction in exact quantization rules. Europhysics Letters, 69(5), 685. DOI: 10.1209/epl/i2004-10418-8. DOI: https://doi.org/10.1209/epl/i2004-10418-8
Ma Z.Q., Xu B.W. (2005) Exact quantization rules for bound states of the Schrödinger equation. International Journal of Modern Physics E, 14(04), 599-610. DOI: 10.1142/S0218301305003429. DOI: https://doi.org/10.1142/S0218301305003429
William E.S., Inyang E.P., Thompson E.A. (2020) Arbitrary -solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model. Revista Mexicana Fisica, 66, 730 - 741. DOI: 10.31349/RevMex Fis.66.730. DOI: https://doi.org/10.31349/RevMexFis.66.730
Abu-Shady M., Edet C.O., Ikot A.N. (2021) Non-relativistic quark model under external magnetic and Aharanov–Bohm (AB) fields in the presence of temperature-dependent confined Cornell potential. Canadian Journal of Physics, 99(11), 1024-1031. DOI: 10.11139/cjp-2020-0101. DOI: https://doi.org/10.1139/cjp-2020-0101
Bayrak O., Boztosun I., Ciftci H. (2007) Exact analytical solutions to the Kratzer potential by the asymptotic iteration method. International Journal of Quantum Chemistry, 107(3), 540-544. DOI: 10.1002/qua.21141. DOI: https://doi.org/10.1002/qua.21141
Omugbe E., Osafile O.E., Okon I.B., Inyang E.P., William E.S., Jahanshir A. (2022) Any L-state energy of the spinless Salpeter equation under the Cornell potential by the WKB Approximation method: An Application to mass spectra of mesons. Few-Body Systems, 63, 1-7. DOI: 10.1007/s00601-021-01705-1. DOI: https://doi.org/10.1007/s00601-021-01705-1
Inyang E.P., Ali N., Endut R., Rusli N., Aljunid S.A., Ali N.R., Asjad M.M. (2024) Thermal Properties and Mass Spectra of Heavy Mesons in the Presence of a Point-Like Defect. East European Journal of Physics, (1), 156-166. DOI: 10.26565/2312-4334-2024-1-13. DOI: https://doi.org/10.26565/2312-4334-2024-1-13
Olive R., Groom D. E., Trippe T.G. (2014) Particle Data Group, Chinese Physics C., 38, 60. DOI: 10.1088/1674-1137/38/9/090001. DOI: https://doi.org/10.1088/1674-1137/38/9/090001
Barnett R.M., Carone C.D., Groom D.E., Trippe T.G., Wohl C.G. Particle Data Group. Physical Review D., 92,656. DOI: 10.1103/PhysRevD.54.1. DOI: https://doi.org/10.1103/PhysRevD.54.1
Tanabashi M., Carone, C. D., Trippe T.G., Wohl C.G. (2018) Particle Data Group. Physical Review D., 98, 546. DOI:10.1103/PhysRevD.98.030001. DOI: https://doi.org/10.1103/PhysRevD.98.030001
Inyang E.P., William E.S., Ntibi J.E., Obu J.A., Iwuji P.C., Inyang E.P. (2022) Approximate solutions of the Schrödinger equation with Hulthén plus screened Kratzer Potential using the Nikiforov–Uvarov–functional analysis (NUFA) method: an application to diatomic molecules. Canadian Journal of Physics, 100(10), 463-473. DOI:10.1139/cjp-2022-0030. DOI: https://doi.org/10.1139/cjp-2022-0030
Flügge S. (2012) Practical quantum mechanics. Springer Science & Business Media. DOI:10.1007/978-3-642-6199.
Vigo‐Aguiar J., Simos T.E. (2005) Review of multistep methods for the numerical solution of the radial Schrödinger equation. International journal of quantum chemistry, 103(3), 278-290. DOI: 10.1002/qua.20495. DOI: https://doi.org/10.1002/qua.20495
Downloads
Received
Revised
Accepted
Published online
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.