FILMS OF POROUS ALUMINUM OXIDE OBTAINED BY TWO-STAGE ANODIZATION

FILMS OF POROUS ALUMINUM OXIDE OBTAINED BY TWO-STAGE ANODIZATION

Authors

DOI:

https://doi.org/10.31489/2025N1/37-43

Keywords:

Transparent anodic aluminum oxide films, double-sided anodizing, porous membranes, anodizing at low temperatures, barrier layer

Abstract

Anodic aluminum oxide films are widely used to obtain many types of organic and inorganic nanomaterials and are of practical importance in studying the optical properties of nanomaterials synthesized from them. This work presents a method of two-sided and two-stage anodization for obtaining anodic aluminum oxide films with periodic and regularly spaced pores. The method of anodic oxidation of aluminum in solutions of acidic electrolytes makes it possible to quite easily vary the parameters of the porous structure of Al2O3. Oxalic acid was used as an electrolyte for “soft” anodizing of the aluminum plate, and ethyl alcohol and a solution of orthophosphoric acid and chromic anhydride were used to pre-clean and polish the aluminum plate. Anodization was carried out at low temperatures, as a result of which it was possible to obtain an aluminum oxide film with a high degree of ordering of pores, the sizes of which ranged from 60 to 110 nm, and the distance between the pores was in the range of 13–27 nm. Absorption and reflection spectra of a porous film of anodized aluminum were obtained, where good absorption of the films is observed in the short-wavelength region of the spectrum, and the maximum value of the refractive index is observed in the short- and long-wavelength regions of the spectrum.

References

Ismail A.F., Khulbe K.C., Matsuura T. (2015) Gas Separation Membranes, Switz. Springer, New York, 10, 973–978. https://doi.org/10.1007/978-3-319-01095-3

Chiu W.V., Park I.S., Shqau K., White J.C., Schillo M.C., Ho W.S.W., Dutta P.K., Verweij H. (2011) Post-synthesis defect abatement of inorganic membranes for gas separation. J. Membr. Sci, 377, 182–190. https://doi.org/10.1016/j.memsci.2011.04.047

Poelman D., Smet P.F. (2003) Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review. J. Phys. D: Appl. Phys., 36, 1850–1857. https://doi.org/10.1088/0022-3727/36/15/316

Cooper C.A., Lin Y.S. (2002) Microstructural and gas separation properties of CVD modified mesoporous γ-alumina membranes. J. Membr. Sci., 195, 35–50. https://doi.org/10.1016/S0376-7388(01)00508-7

Wang H., Zhang L., Gavalas G.R. (2000) Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization. J. Membr. Sci., 177, 25–31. https://doi.org/10.1016/S0376-7388(00)00444-0

Lee W., Park S.J. (2014) Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev., 114, 7487–7556. https://doi.org/10.1021/cr500002z

Iravani S. (2023) Surfactant-free synthesis of metal and metal oxide nanomaterials: a perspective. RSC Sustainability, 1, 72–82. https://doi.org/10.1039/d2su00088a

Li Z., Wei H., Chen D., Chang M., Hu H., Ye X., Zhang Y., Wen W., Wang M. (2021) Optical properties of multicolor, hierarchical nanocomposite films based on anodized aluminum oxide. Opt. Mater., 111, 110557. https://doi.org/10.1016/j.optmat.2020.110557

Wei H., Xu Q., Chen D., Chen M., Chang M., Ye X. (2022) Lowered infrared emittance and enhanced thermal stability of solar selective absorption properties of anodic aluminum oxide photonic crystal coatings. Sol. Energy, 241, 592–600. https://doi.org/10.1016/j.solener.2022.06.041

Roslyakov I.V., Kolesnik I.V., Evdokimov P.V., Skryabina O.V., Garshev A.V., Mironov S.M., Stolyarov V.S., Baranchikov A.E., Napolskii K.S. (2021) Microhotplate catalytic sensors based on porous anodic alumina: operando study of methane response hysteresis. Sensor. Actuator. B Chem., 330, 129307. https://doi.org/10.1016/j.snb.2020.129307

Pan M., Cooper C., Lin Y.S., Meng G.Y. (1999) CVD modification and vapor/gas separation properties of nanoporous alumina membranes. J. Membr. Sci., 158, 235–241. https://doi.org/10.1016/S0376-7388(99)00016-2

Wang X., Wang J., Jiang Z., Tao D., Zhang X., Wang C. (2021) Silver loaded anodic aluminum oxide dual-bandgap heterostructure photonic crystals and their application for surface enhanced Raman scattering. Appl. Surf. Sci., 544, 148881. https://doi.org/10.1016/j.apsusc.2020.148881

Shi L., Jia F., Wang L., Jalalah M., Al-Assiri M.S., Gao T., Harraz F.A., Li G. (2021) Fabrication of an artificial ionic gate inspired by mercury-resistant bacteria for simple and sensitive detection of mercury ion. Sensor. Actuator. B Chem., 326, 128976. https://doi.org/10.1016/j.snb.2020.128976

Zhang X., Zhang J., Han X., Wang S., Hao L., Zhang C., Fan Y., Zhao J., Jiang R., Ren L. (2023) A photothermal therapy enhanced mechano-bactericidal hybrid nanostructured surface. J. Colloid Interface Sci., 645, 380–390. https://doi.org/10.1016/j.jcis.2023.04.148

Thao D.T.V., Weng W.T., Hieu N.V., Chang C.C., Wang G.J. (2022) A flexible and stretchable photonic crystal film with sensitive structural color-changing properties for spoiled milk detection. Food Chem. X, 16, 100526. https://doi.org/10.1016/j.fochx.2022.100526

Ruiz-Clavijo A., Caballero-Calero O., Martin-Gonzalez M. (2021) Revisiting anodic alumina templates: from fabrication to applications. Nanoscale, 13, 2227–2265. https://doi.org/10.1039/D0NR07582E

Wangkasem P., Rojananan S. (2015) Mechanical and Electrical Properties of Aluminium Alloy by Cryorolling Process. The International Journal of Advanced Culture Technology, 3(1), 46-51. https://doi.org/10.17703/IJACT.2015.3.1.46

Liu Y., Wang H.H., Indacochea J.E., Wang M.L. (2011) A colorimetric sensor based on anodized aluminum oxide (AAO) substrate for the detection of nitroaromatics. Sensors and Actuators B: Chemical, 160(1), 1149-1158. https://doi.org/10.1016/j.snb.2011.09.040

Hierro-Rodriguez A., Rocha-Rodrigues P., Valdés-Bango F., Alameda J.M., Jorge P.A.S., Santos J.L., Araujo J.P., Teixeira J.M., Guerreiro A. (2015) On the anodic aluminium oxide refractive index of nanoporous templates. Journal of Physics D: Applied Physics, 48(45), 455105. https://doi.org/ 10.1088/0022-3727/48/45/455105.

Koushki E., Mousavi S.H., Jafari Mohammadi S.A., Majles Ara M.H., Oliveira P.W. (2015) Optical properties of aluminum oxide thin films and colloidal nanostructures. Thin solid films, 592, 81-87. https://doi.org/10.1016/j.tsf.2015.09.003

Seredin P.V., Lenshin A.S., Kashkarov V.M., Lukin A.N., Arsentiev I.N., Bondarev A.D., Tarasov I.S. (2015) Ultrathin nano-sized Al2O3 strips on the surface of por-Si. Materials Science in Semiconductor Processing, 39, 551-558. https://doi.org/10.1016/j.mssp.2015.05.067

Downloads

Published online

2025-03-31

How to Cite

Zhangbyrbay, Y., Aimukhanov, A., Zeinidenov, A., Gadirov, R., Abeuov, D., & Zhakanova, A. (2025). FILMS OF POROUS ALUMINUM OXIDE OBTAINED BY TWO-STAGE ANODIZATION. Eurasian Physical Technical Journal, 22(1 (51), 37–43. https://doi.org/10.31489/2025N1/37-43

Issue

Section

Materials science

Most read articles by the same author(s)

Loading...