PROPERTIES OF Ag/TiO2 AND Ag/SiO2 NANOPARTICLES AND THEIR EFFECT ON THE PHOTOCATALYTIC PROPERTIES OF A SEMICONDUCTOR NANOCOMPOSITE

PROPERTIES OF Ag/TiO2 AND Ag/SiO2 NANOPARTICLES AND THEIR EFFECT ON THE PHOTOCATALYTIC PROPERTIES OF A SEMICONDUCTOR NANOCOMPOSITE

Authors

DOI:

https://doi.org/10.31489/2025N2/25-32

Keywords:

plasmon, nanoparticles, optical properties, photocatalysis, nanocomposite

Abstract

The optical properties and the electric field distribution around silver nanoparticles coated with TiO2 or SiO2 shell have been studied. It is demonstrated that the presence of a shell around a plasmonic nanoparticle leads to a bathochromic shift in the maximum of its absorption band. The maximum electric field intensity around metal nanoparticles is radially concentrated, predominantly near the surface of the nanoparticles. The quantum efficiency, representing the ratio of emitted photons to absorbed photons, is nearly 50% higher for Ag/TiO2 nanoparticles compared to Ag/SiO2. In the presence of Ag/TiO2 and Ag/SiO2 core/shell nanoparticles the photocatalytic activity of the TiO2/rGO nanocomposite increases by 2.7 and 1.7 times, respectively. These changes are associated with improved charge transport properties of TiO2/rGO and possible hot electron injection from the nanoparticles into the semiconductor.

 

References

Mayer K.M., Hafner J.H. (2011) Localized surface plasmon resonance sensors. Chemical Reviews, 111, 3828–3857. https://doi.org/10.1021/cr100313v DOI: https://doi.org/10.1021/cr100313v

Lin K.-T., Lin H., Jia B. (2020) Plasmonic nanostructures in photodetection, energy conversion and beyond. Nanophotonics, 9(10), 3135–3163. https://doi.org/10.1515/nanoph-2020-0104 DOI: https://doi.org/10.1515/nanoph-2020-0104

Barbillon G. (2019). Plasmonics and its applications. Materials, 12(9), 1502. https://doi.org/10.3390/ma12091502 DOI: https://doi.org/10.3390/ma12091502

Ai B., Fan Z., Wong Z.J. (2022). Plasmonic–perovskite solar cells, light emitters, and sensors. Microsystems Nanoengineering, 8, 5. https://doi.org/10.1038/s41378-021-00334-2 DOI: https://doi.org/10.1038/s41378-021-00334-2

Kasani S., Curtin K., Wu N. (2019). A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications. Nanophotonics, 8(12), 2065–2089. https://doi.org/10.1515/nanoph-2019-0158 DOI: https://doi.org/10.1515/nanoph-2019-0158

Ibrayev N., Seliverstova E., Omarova G. (2020) The influence of plasmons of Ag nanoparticles on photovoltaics of functionalized polymethine dye. Materials Today: Proceedings, 25, 39–43. https://doi.org/10.1016/j.matpr.2019.11.01 DOI: https://doi.org/10.1016/j.matpr.2019.11.016

Chiozzia V., Rossi F. (2020) Inorganic–organic core/shell nanoparticles: Progress and applications. Nanoscale Advances, 2, 5090-5105. https://doi.org/10.1039/D0NA00411A DOI: https://doi.org/10.1039/D0NA00411A

Rusdan N.A., Timmiati Sh.N., Yaakob Z., Lim K.L., Khaidar D. (2022) Recent application of core-shell nanostructured catalysts for CO₂ thermocatalytic conversion processes. Nanomaterials, 12(21), 3877. https://doi.org/10.3390/nano12213877 DOI: https://doi.org/10.3390/nano12213877

Turakova M., Salmi T., Eränen K., Warnå J., Murzin D.Y., Kralik M. (2015) Liquid phase hydrogenation of nitrobenzene. Applied Catalysis A: General. 499, 66-76. https://doi.org/10.1016/j.apcata.2015.04.002 DOI: https://doi.org/10.1016/j.apcata.2015.04.002

Gawande M. B., Goswami A., Asefa T., Guo H., Biradar A.V., Peng D.-L., Zboril R., Varma R.S. (2015) Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 44, 7540-7590. https://doi.org/10.1039/C5CS00343A DOI: https://doi.org/10.1039/C5CS00343A

Das S., Pérez-Ramírez J., Gong J., Dewangan N., Hidajat K., Gates B.C., Kawi S. (2020) Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews, 49, 2937-3004. https://doi.org/10.1039/C9CS00713J DOI: https://doi.org/10.1039/C9CS00713J

Lin L., Zhong Q., Zheng Y., Cheng Y., Qi R., Huang R. (2021) Size effect of Au nanoparticles in Au-TiO₂-x photocatalyst. Chemical Physics Letters, 770, 138457. https://doi.org/10.1016/j.cplett.2021.138457 DOI: https://doi.org/10.1016/j.cplett.2021.138457

Afanasyev D.A., Ibrayev N.K., Serikov T.M., Zeinidenov A.K. (2016) Effect of the titanium dioxide shell on the plasmon properties of silver nanoparticles. Journal of Physical Chemistry A, 90(4), 833–837. https://doi.org/10.1134/S0036024416040026 DOI: https://doi.org/10.1134/S0036024416040026

Alikhaidarova E., Afanasyev D., Ibrayev N., Nuraje N. (2022) Plasmonic enhanced polymer solar cell with inclusion of AgSiO₂ core-shell nanostructures. Polymer Advanced Technologies, 33(3), 1000–1008. https://doi.org/10.1002/pat.5574 DOI: https://doi.org/10.1002/pat.5574

Seliverstova E., Serikov T., Nuraje N., Ibrayev N., Sadykova A., Amze M. (2024) Plasmonic effect of metal nanoparticles on the photocatalytic properties of TiO₂/rGO composite. Nanotechnology, 35, 325401. https://doi.org/10.1088/1361-6528/ad3e02 DOI: https://doi.org/10.1088/1361-6528/ad3e02

Zhumabekov A., Seliverstova E., Ibrayev N. (2019). Investigation of photocatalytic activity of TiO2-GO nanocomposite. Eurasian Physical Technical Journal, 16(1(31)), 42–46. https://doi.org/10.31489/2019No1/42-46 DOI: https://doi.org/10.31489/2019No1/42-46

Zhang B., Wang D., Hou Y., Yang S., Yang X. H., Zhong J. H., Liu J., Wang H. F., Hu P., Zhao H. J., Yang H. G. (2013). Facet-dependent catalytic activity of platinum nanocrystals for triiodide reduction in dye-sensitized solar cells. Scientific Reports, 3, 1836, https://doi.org/10.1038/srep01836 DOI: https://doi.org/10.1038/srep01836

Johnson P.B., Christy R.W. (1972). Optical constants of noble metals. Physical Review B, 6, 4370. https://doi.org/10.1103/PhysRevB.6.4370 DOI: https://doi.org/10.1103/PhysRevB.6.4370

Polyanskiy M.N. (2024). Refractive index.info database of optical constants. Scientific Data, 94, 19. https://doi.org/10.1038/s41597-024-01102-5 DOI: https://doi.org/10.1038/s41597-023-02898-2

Ibrayev N.Kh., Seliverstova E.V., Kanapina A.E. (2022) Transient absorption of gold nanoparticles of various diameters. European Physical Technical Journal, 19(4), 73–77. https://doi.org/10.31489/2022No4/73-77 DOI: https://doi.org/10.31489/2022No4/73-77

Adachi M., Sakamoto M., Jiu J., Ogata Y., Isoda S. (2006) Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. Journal of Physical Chemistry B, 110, 13872–13880. https://doi.org/10.1021/jp060976l DOI: https://doi.org/10.1021/jp061693u

Downloads

Published online

2025-06-30

How to Cite

Sharapov, I., Omarova, G., Sadykova, A., & Seliverstova, E. (2025). PROPERTIES OF Ag/TiO2 AND Ag/SiO2 NANOPARTICLES AND THEIR EFFECT ON THE PHOTOCATALYTIC PROPERTIES OF A SEMICONDUCTOR NANOCOMPOSITE. Eurasian Physical Technical Journal, 22(2 (52), 25–32. https://doi.org/10.31489/2025N2/25-32

Issue

Section

Materials science
Loading...