ENHANCED EFFICIENCY OF DYE-SENSITIZED SOLAR CELLS USING ZNO NANOPARTICLE DOPING CU FROM PINEAPPLE PEEL EXTRACT WITH MODIFIED NATURAL DYE SOLUTION
DOI:
https://doi.org/10.31489/2025N2/42-53Keywords:
Dye-Sensitized Solar Cells, ZnO nanoparticles, Cu Doping, Dye Solution, Green synthesisAbstract
Photoanodes and dye solutions are indispensable in the stability and efficiency of Dye-Sensitized Solar Cells’ performance. In this study, the photoanode uses a ZnO sample doped with Cu, made using a green synthesis technique with bio-reduction from pineapple skin extract. Meanwhile, using the maceration method, the dye solution is made from mulberry fruit extract and moringa leaves. For Dye-Sensitized Solar Cells applications, ZnO photoanodes doped with 1%, 3%, 5%, and 10% Cu were each depleted on ITO glass and immersed in the dye solution for one day. The results were then tested for electrical conductivity and performance in Dye-Sensitized Solar Cells. Adding Cu doping concentration to the ZnO photoanode can affect the performance of the Dye-Sensitized Solar Cell. In this work, the ZnO sample doped with 5% Cu as a photoanode showed the highest efficiency at 1.67% with an electron lifetime of 12 ms, compared to the photoanode without Cu doping or with Cu doping at concentrations of 1%, 3%, and 10%. Thus, Cu-doped ZnO nanoparticles and dye solutions from natural materials can be further developed for Dye-Sensitized Solar Cells applications.
References
Neikov O.D., Naboychenko S.S., Murashova I.B. (2019) Production of rare metal powders. Handbook of Non-Ferrous Metal Powders (Second Edition), Chapter 24, 757-829. https://doi.org/10.1016/B978-0-08-1005439.00024-5. DOI: https://doi.org/10.1016/B978-0-08-100543-9.00024-5
Göde F., Balpinar N. (2023) Dye-sensitized solar cells fabricated using ZnO:Cu thin films and dye extracted from Hypericum perforatum L. flowers. Dig. J. Nanomater. Biostruct. 18(1), 389-402. https://doi.org/10.15251/DJNB.2023.181.389. DOI: https://doi.org/10.15251/DJNB.2023.181.389
Huo J., Ni Y., Li D., Qiao J., Huang D., Sui X., Zhang Y. (2023) Comprehensive structural analysis of polyphenols and their enzymatic inhibition activities and antioxidant capacity of black mulberry (Morus nigra L.). Food Chem., 427, 136605. https://doi.org/10.1016/j.foodchem.2023.136605. DOI: https://doi.org/10.1016/j.foodchem.2023.136605
Yildiz Z.K., Atilgan A., Atli A., Özel K., Altinkaya C., Yildiz A. (2019) Enhancement of efficiency of natural and organic dye sensitized solar cells using thin film TiO2 photoanodes fabricated by spin-coating. J. Photochem. Photobiol. A Chem., 368, 23-29. https://doi.org/10.1016/j.jphotochem.2018.09.018. DOI: https://doi.org/10.1016/j.jphotochem.2018.09.018
Rotulung J.C., Djarkasi G.S.S., Taroreh M.I.R. (2023) Pengaruh Penambahan Sari Daun Kelor Terhadap Kadar Kalsium Dan Sifat Sensoris Pada Susu Kenari. Jurnal Teknologi Pertanian., 14(2), 110-118. https://doi.org/ https://doi.org/10.35791/jteta.v14i2.51877 DOI: https://doi.org/10.35791/jteta.v14i2.51877
Fajri, Rahmatu R., Alam N. (2018) Kadar Klorofil Dan Vitamin C Daun Kelor (Moringa Oleifera Lam) dari Berbagai Ketinggian Tempat Tumbuh. AGROTEKBIS: Jurnal Ilmu Pertanian., 6(2), 152-158. Available at: http://jurnal.faperta.untad.ac.id/index.php/agrotekbis/article/view/270/263
Vaiano V., Matarangolo M., Murcia J.J., Rojas H., Navío J.A., Hidalgo M.C. (2018) Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl. Catal. B, 225, 197-206. https://doi.org/10.1016/j.apcatb.2017.11.075. DOI: https://doi.org/10.1016/j.apcatb.2017.11.075
Das A., Nair R.G. (2020) Effect of aspect ratio on photocatalytic performance of hexagonal ZnO nanorods. J. Alloys Compd., 817: 153277. https://doi.org/10.1016/j.jallcom.2019.153277. DOI: https://doi.org/10.1016/j.jallcom.2019.153277
Wu D., Wang Y., Ma N., Cao K., Zhang W., Chen J., Wang D., Gao Z., Xu F., Jiang K. (2019) Single-crystal-like ZnO mesoporous spheres derived from metal organic framework delivering high electron mobility for enhanced energy conversion and storage performances. Electrochim. Acta, 305, 474–483. https://doi.org/10.1016/j.electacta.2019.0 DOI: https://doi.org/10.1016/j.electacta.2019.03.077
Kuang M., Zhang J., Wang W., Chen J., Liu R., Xie S., Wang J., Ji Z. (2019) Synthesis of octahedral-like ZnO/ZnFe2O4 heterojunction photocatalysts with superior photocatalytic activity. Solid State Sci., 96, 105901. https://doi.org/10.1016/j.solidstatesciences.2019.05.012. DOI: https://doi.org/10.1016/j.solidstatesciences.2019.05.012
Esgin H., Caglar Y., Caglar M. (2022) Photovoltaic performance & physical characterization of Cu doped ZnO nanopowders as photoanode for DSSC. J.Alloys Compd., 890, 161848. https://doi.org/10.1016/j.jallcom.2021.16184 8 DOI: https://doi.org/10.1016/j.jallcom.2021.161848
Gaurav A., Beura R., Kumar J.S., Thangadurai P. (2019) Study on the effect of copper ion doping in zinc oxide nanomaterials for photocatalytic applications. Mater. Chem. Phys., 230, 162-171. https://doi.org/10.1016/j.matchemphys.2019.03.056. DOI: https://doi.org/10.1016/j.matchemphys.2019.03.056
Ge Z., Wang C., Chen T., Chen Z., Wang T., Guo L., Qi G., Liu J. (2021) Preparation of Cu-doped ZnO nanoparticles via layered double hydroxide and application for dye-sensitized solar cells. J. Phys. Chem. Solids, 150. https://doi.org/10.1016/j.jpcs.2020.109833. DOI: https://doi.org/10.1016/j.jpcs.2020.109833
Kumbhar D., Kumbhar S.S., Delekar S., Nalawade R., Nalawade A. (2019) Photoelectrochemical cell performance cu doped zno photoanode sensitized by xanthene dyes. Nanosyst: Phys. Chem. Math., 10(4), 466–474. http://doi.org/10.17586/2220-8054-2019-10-4-466-474. DOI: https://doi.org/10.17586/2220-8054-2019-10-4-466-474
Muthuvel A., Jothibas M., Manoharan C. (2020) Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and invitro antioxidant activity. J. Environ. Chem. Eng., 8, 103705. https://doi.org/10.1016/j.jece.2020.103705. DOI: https://doi.org/10.1016/j.jece.2020.103705
Kazemi S., Hosseingholian A., Gohari S.D., Feirahi F., Moammeri F., Mesbahian G., Moghaddam Z.S., Ren Q. (2023) Recent advances in green synthesized nanoparticles: from production to application. Mater. Today Sustain., 24, 100500. https://doi.org/10.1016/j.mtsust.2023.100500. DOI: https://doi.org/10.1016/j.mtsust.2023.100500
Khan M.M., Harunsani M.H., Tan A.L., Hojamberdiev M., Poi Y.A., Ahmad N. (2020) Antibacterial Studies of ZnO and Cu-Doped ZnO Nanoparticles Synthesized Using Aqueous Leaf Extract of Stachytarpheta jamaicensis. BioNanoScience, 10(4), 1037–48. https://doi.org/10.1007/s12668-020-00775-5. DOI: https://doi.org/10.1007/s12668-020-00775-5
Rohmawati L., Lailia L.R., Putri N.P., Nasir M., Darminto D. (2024) Characterization of ZnO Nanoparticles Pineapple Skin Extract (Ananas comosus L.) as Photocatalytic Activity. J. Water Environ. Nanotechnol., 9(1), 112–123. http://doi.org/10.22090/jwent.2024.01.08.
Gaur J., Vikrant K., Him K.H., Kumar S., Pal M., Badru R., Masand S., Momoh J. (2023) Photocatalytic degradation of Congo red dye using zinc oxide nanoparticles prepared using Carica papaya leaf extract. Mater. Today Sustain., 22, 100339. https://doi.org/10.1016/j.mtsust.2023.100339. DOI: https://doi.org/10.1016/j.mtsust.2023.100339
Andari R. (2020) Distance Variation of Light Source Effects toward Dye Sensitized Solar Cell (DSSC) Performance using Anthocyanin Extract from Rosella Flower. JPSE (Journal of Physics Science and Engineering), 5(1), 31–35. http://doi.org/10.17977/um024v5i12020p031. DOI: https://doi.org/10.17977/um024v5i12020p031
Nazim V.S., El-Sayed G.M., Amer S.M., Nadim A.H. (2023) Optimization of metal dopant effect on ZnO nanoparticles for enhanced visible LED photocatalytic degradation of citalopram: comparative study and application to pharmaceutical cleaning validation. Sustain. Environ. Res., 33(39), 1-16. https://doi.org/10.1186/s42834-023-00198-3. DOI: https://doi.org/10.1186/s42834-023-00198-3
Munandar M.R., Hakim A.S.R., Puspitadindha H.A., Andiyani S.P., Nurosyid F. (2022) The effect of mixing Chlorophyll-Antocyanin as a natural source dye on the efficiency of dye-sensitized solar cell (DSSC). J. Phys. Conf. Ser., 2190(1), 012042. https://doi.org/10.1088/1742-6596/2190/1/012042. DOI: https://doi.org/10.1088/1742-6596/2190/1/012042
Sakshi, Singh P.K., Shukla V.K. (2022) Widening spectral range of absorption using natural dyes: Applications in dye sensitized solar cell. Mater. Today Proc., 49(8), 3235-3238. https://doi.org/10.1016/j.matpr.2020.12.287. DOI: https://doi.org/10.1016/j.matpr.2020.12.287
Kyaw K.K., Toe H. (2020) Characterization and Doping Effect of Cu-Doped ZnO Films. Mater. Sci. Eng. A, 10(3-4), 43-52. https://doi.org/10.17265/2161-6213/2020.3-4.001. DOI: https://doi.org/10.17265/2161-6213/2020.3-4.001
Ramya M., Nideep T.K., Nampoori V.P.N., Kailasnath M. (2021) The impact of ZnO nanoparticle size on the performance of photoanodes in DSSC and QDSSC: a comparative study. J Mater Sci: Mater Electron., 32, 3167-3179. https://doi.org/10.1007/s10854-020-05065-0. DOI: https://doi.org/10.1007/s10854-020-05065-0
Rajan A.K., Louis C. (2020) Localized surface plasmon resonance of Cu-doped ZnO nanostructures and the material's integration in dye sensitized solar cells (DSSCs) enabling high open-circuit potentials. Journal of Alloys and Compounds, 829, 154497. https://doi.org/10.1016/j.jallcom.2020.154497. DOI: https://doi.org/10.1016/j.jallcom.2020.154497
Alam M.W., Ansari M.Z., Aamir M., Waheed-Ur-Rehman M., Parveen N., Ansari S.A. (2022) Preparation and Characterization of Cu and Al Doped ZnO Thin Films for Solar Cell Applications. Crystals, 12, 128. https://doi.org/10.3390/cryst12020128. DOI: https://doi.org/10.3390/cryst12020128
Downloads
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.