THERMAL INFRARED OBJECT DETECTION WITH YOLO MODELS
DOI:
https://doi.org/10.31489/2025N2/121-132Keywords:
object detection, YOLO models, Unmanned aerial vehicle, Forward-Looking Infrared cameras, thermal infrared images, Raspberry Pi 5Abstract
Object detection is a fundamental task in computer vision and remote sensing, aimed at recognizing and categorizing different types of objects within images. Unmanned aerial vehicle - based thermal infrared remote sensing provides crucial multi-scenario images and videos, serving as key data sources in public applications. However, object detection in these images remains challenging due to complex scene information, lower resolution compared to visible-spectrum videos, and a shortage of publicly available labeled datasets and trained models. This article introduces a Unmanned aerial vehicle - based thermal infrared object detection framework for analyzing images and videos in public applications and evaluates the performance of YOLOv8n/v8s, YOLOv11n/v11s, and YOLOv12n/v12s models in extracting features from ground-based thermal infrared images and videos captured by Forward-Looking Infrared cameras, as well as from unmanned aerial vehicle - recorded thermal infrared videos taken from various angles. The YOLOv8n/v8s, YOLOv11n/v11s, and the latest YOLOv12n/v12s models were deployed on a Raspberry Pi 5 using the OpenVINO framework. The successful deployment of these models, including the most recent version, demonstrates their feasibility for unmanned aerial vehicle-based thermal infrared object detection. The results show that YOLOv8 and YOLOv11 achieved high accuracy and recall rates of 93% and 92%, respectively, while the YOLOv12 model demonstrated good precision but comparatively lower performance in accuracy and recall, suggesting the possibility for further improvement.
References
Ren X., Sun M., Zhang X., Liu L., Zhou H., Ren X. (2022) An improved mask-RCNN algorithm for UAV TIR video stream target detection. International Journal of Applied Earth Observation and Geoinformation, 106, 102660. https://doi.org/10.1016/j.jag.2021.102660 DOI: https://doi.org/10.1016/j.jag.2021.102660
Laghari A. A., Jumani A.K., Laghari R.A., Li H., Karim S., Khan A.A. (2024) Unmanned aerial vehicles advances in object detection and communication security review. Cognitive Robotics, https://doi.org/10.1016/j.cogr.2024.07.002 DOI: https://doi.org/10.1016/j.cogr.2024.07.002
Mesvan N. (2021) Cnn-based human detection for uavs in search and rescue. arXiv preprint arXiv:2110.01930. https://doi.org/10.48550/arXiv.2110.01930
Jiang C., Ren H., Ye X., Zhu J., Zeng H., Nan Y., . Huo H. (2022) Object detection from UAV thermal infrared images and videos using YOLO models. International Journal of Applied Earth Observation and Geoinformation, 112, 102912. https://doi.org/10.1016/j.jag.2022.102912
Haider A., Shaukat F., Mir J. (2021) Human detection in aerial thermal imaging using a fully convolutional regression network. Infrared Physics & Technology, 116, 103796. https://doi.org/10.1016/j.infrared.2021.103796 DOI: https://doi.org/10.1016/j.infrared.2021.103796
Murthy J. S., Siddesh G.M., Lai W.C., Parameshachari B.D., Patil S.N., Hemalatha K.L. (2022) ObjectDetect: A Real‐Time Object Detection Framework for Advanced Driver Assistant Systems Using YOLOv5. Wireless Communications and Mobile Computing, 2022(1), 9444360. https://doi.org/10.1155/2022/9444360 DOI: https://doi.org/10.1155/2022/9444360
Yeom S. (2024) Thermal image tracking for search and rescue missions with a drone. Drones, 8(2), 53. https://doi.org/10.3390/drones8020053 DOI: https://doi.org/10.3390/drones8020053
Rizk M., Bayad I. (2025) Bringing Intelligence to SAR Missions: A Comprehensive Dataset and Evaluation of YOLO for Human Detection in TIR Images. IEEE Access. https://doi.org/ 10.1109/ACCESS.2025.3529484 DOI: https://doi.org/10.1109/ACCESS.2025.3529484
Song Z., Yan Y., Cao Y., Jin S., Qi F., Li Z., Lu G. (2025) An infrared dataset for partially occluded person detection in complex environment for search and rescue. Scientific Data, 12(1), 300. https://doi.org/10.1038/s41597-025-04600-0 DOI: https://doi.org/10.1038/s41597-025-04600-0
Dinh H.T., Kim E.T. (2025) A Lightweight Network Based on YOLOv8 for Improving Detection Performance and the Speed of Thermal Image Processing. Electronics, 14(4), 783. https://doi.org/10.3390/electronics14040783 DOI: https://doi.org/10.3390/electronics14040783
Abbas Y., Al Mudawi N., Alabdullah B., Sadiq T., Algarni A., Rahman H., Jalal A. (2024) Unmanned aerial vehicles for human detection and recognition using neural-network model. Frontiers in Neurorobotics, 18, 1443678. https://doi.org/10.3389/fnbot.2024.1443678 DOI: https://doi.org/10.3389/fnbot.2024.1443678
Shao Z., Cheng G., Ma J., Wang Z., Wang J., Li D. (2021) Real-time and accurate UAV pedestrian detection for social distancing monitoring in COVID-19 pandemic. IEEE Trans. Multimed., 1–16. https://doi.org/ 10.1109/TMM.2021.3075566 DOI: https://doi.org/10.1109/TMM.2021.3075566
Shin D.-J., Kim J.-J. (2022) A deep learning framework performance evaluation to use YOLO in nvidia jetson platform. Appl. Sci., 12 (8), 3734. https://doi.org/10.3390/app12083734 DOI: https://doi.org/10.3390/app12083734
Jiang C., Ren H., Ye X., Zhu J., Zeng H., Nan Y., Huo H. (2022) Object detection from UAV thermal infrared images and videos using YOLO models. International Journal of Applied Earth Observation and Geoinformation, 112, 102912. https://doi.org/10.1016/j.jag.2022.102912 DOI: https://doi.org/10.1016/j.jag.2022.102912
Zeng, S., Yang W., Jiao Y., Geng L., Chen X. (2024) SCA-YOLO: A new small object detection model for UAV images. The Visual Computer, 40(3), 1787-1803. https://doi.org/10.1007/s00371-023-02886-y DOI: https://doi.org/10.1007/s00371-023-02886-y
Kumar S., Yadav D., Gupta H., Verma O.P., Ansari I.A., Ahn C.W. (2021) A novel YOLOv3 algorithm-based deep learning approach for waste segregation: Towards smart waste management. Electron, 10, 1–20. https://doi.org/10.3390/electronics10010014 DOI: https://doi.org/10.3390/electronics10010014
Li Z., Namiki A., Suzuki S., Wang Q., Zhang T., Wang W. (2022) Application of low-altitude UAV remote sensing image object detection based on improved YOLOv5. Applied Sciences, 12(16), 8314. https://doi.org/10.3390/app12168314 DOI: https://doi.org/10.3390/app12168314
Liu P., Wang Q., Zhang H., Mi J., Liu Y. (2023) A lightweight object detection algorithm for remote sensing images based on attention mechanism and YOLOv5s. Remote Sensing, 15(9), 2429. https://doi.org/10.3390/rs15092429 DOI: https://doi.org/10.3390/rs15092429
Rasheed A.F., Zarkoosh M. (2025) Optimized YOLOv8 for multi-scale object detection. Journal of Real-Time Image Processing, 22(1), 6. https://doi.org/10.1007/s11554-024-01582-x DOI: https://doi.org/10.1007/s11554-024-01582-x
Rasheed A.F., Zarkoosh M. (2024) YOLOv11 Optimization for Efficient Resource Utilization. arXiv preprint arXiv:2412.14790. https://doi.org/10.48550/arXiv.2412.14790 DOI: https://doi.org/10.1007/s11227-025-07520-3
Khanam R., Hussain M. (2024) Yolov11: An overview of the key architectural enhancements. arXiv preprint arXiv:2410.17725. https://doi.org/10.48550/arXiv.2410.17725
Jegham N., Koh C.Y., Abdelatti M., Hendawi A. (2024) Evaluating the evolution of yolo (you only look once) models: A comprehensive benchmark study of yolo11 and its predecessors. arXiv preprint arXiv:2411.00201. https://doi.org/10.48550/arXiv.2411.00201
Ussipov N., Akhtanov S., Turlykozhayeva D., Temesheva S., Akhmetali A., Zaidyn M., Tang X. (2024) MEGA: Maximum-Entropy Genetic Algorithm for Router Nodes Placement in Wireless Mesh Networks. Sensors, 24(20), 6735. https://doi.org/10.3390/s24206735 DOI: https://doi.org/10.3390/s24206735
Ussipov N., Akhtanov S., Zhanabaev Z., Turlykozhayeva D., Karibayev B., Namazbayev T., . Tang X. (2024) Automatic modulation classification for MIMO system based on the mutual information feature extraction. IEEE Access. 10.1109/ACCESS.2024.3400448 DOI: https://doi.org/10.1109/ACCESS.2024.3400448
Andrushchenko M., Selivanova K., Avrunin O., Palii D., Tymchyk S., Turlykozhayeva D. (2024) Hand movement disorders tracking by smartphone based on computer vision methods. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14: 5–10. http://doi.org/10.35784/iapgos.6126 DOI: https://doi.org/10.35784/iapgos.6126
Turlykozhayeva, D., Temesheva, S., Ussipov, N., Bolysbay, A., Akhmetali, A., Akhtanov, S., & Tang, X. (2024, October). Experimental Performance Comparison of Proactive Routing Protocols in Wireless Mesh Network Using Raspberry Pi 4. In Telecom (Vol. 5, No. 4, pp. 1008-1020). MDPI. https://doi.org/10.3390/telecom5040051 DOI: https://doi.org/10.3390/telecom5040051
Turlykozhayeva D.A., Akhtanov S. N., Baigaliyeva A.N., Temesheva S. A., Zhexebay D. M., Zaidyn M., Skabylov A.A. (2024) Evaluating Routing Algorithms Across Different Wireless Mesh Network Topologies Using Ns-3 Simulator. Eurasian Physical Technical Journal, 21(2). https://doi.org/10.31489/2024No2/70-82 DOI: https://doi.org/10.31489/2024No2/70-82
Turlykozhayeva D.A., Akhtanov S.N., Zhanabaev Z.Z., Ussipov N.M., Akhmetali A. (2025) A routing algorithm for wireless mesh network based on information entropy theory. IET Communications, 19(1), e70011. https://doi.org/10.1049/cmu2.70011 DOI: https://doi.org/10.1049/cmu2.70011
Turlykozhayeva D., Waldemar W., Akhmetali A., Ussipov N., Temesheva S., Akhtanov S. (2024) Single Gateway Placement in Wireless Mesh Networks. Physical Sciences and Technology, 11(1-2). https://doi.org/10.26577/phst2024v11i1a5 DOI: https://doi.org/10.26577/phst2024v11i1a5
Turlykozhayeva D., Akhtanov S., Zhexebay D., Ussipov N., Baigaliyeva A., Wójcik W., Boranbayeva N. (2024) Evaluating machine learning-based routing algorithms on various wireless network topologies. Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments, 13400, 236-245. https://doi.org/10.1117/12.3058676 DOI: https://doi.org/10.1117/12.3058676
Ibraimov M. K., Tynymbayev S. T., Skabylov A.A., Kozhagulov Y., Zhexebay D.M. (2022) Development and design of an FPGA-based encoder for NPN. Cogent Engineering, 9(1), 2008847. https://doi.org/10.1080/23311916.2021.2008847 DOI: https://doi.org/10.1080/23311916.2021.2008847
Zhexebay D., Skabylov A., Ibraimov M., Khokhlov S., Agishev A., Kudaibergenova G., Agishev A. (2025) Deep Learning for Early Earthquake Detection: Application of Convolutional Neural Networks for P-Wave Detection. Applied Sciences, 15(7), 3864. https://doi.org/10.3390/app15073864 DOI: https://doi.org/10.3390/app15073864
Ussipov N., Zhanabaev Z., Almat A., Zaidyn M., Turlykozhayeva D., Akniyazova A., Namazbayev T. (2024) Classification of Gravitational Waves from Black Hole-Neutron Star Mergers with Machine Learning. Journal of Astronomy and Space Sciences, 41(3), 149-158. https://doi.org/10.5140/JASS.2024.41.3.149 DOI: https://doi.org/10.5140/JASS.2024.41.3.149
Akhmetali A., Namazbayev T., Subebekova G., Zaidyn M., Akniyazova A., Ashimov Y., Ussipov N. (2024) Classification of Variable Star Light Curves with Convolutional Neural Network. Galaxies, 12(6), 75. DOI: https://doi.org/10.3390/galaxies12060075
Downloads
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.