SPECTROPHOTOMETRIC STUDIES OF ASTEROIDS I: REFLECTANCE SPECTRA

SPECTROPHOTOMETRIC STUDIES OF ASTEROIDS I: REFLECTANCE SPECTRA

Authors

DOI:

https://doi.org/10.31489/2025N2/133-146

Keywords:

spectrophotometry, asteroids, reflectance spectra, Gaia DR3

Abstract

The paper presents the results of the analysis of the reflectivity spectra of asteroids based on observations obtained on 2024-02-22, 2023-11-03, 2023-11-04 and 2023-11-21 at the Assy-Turgen Observatory (77°.87114 E, 43°.225527 N, 2658 meters above sea level, international observatory code 217) using a long-slit spectrograph based on volume-phase holographic gratings (VPHG) installed at the prime focus of the AZT-20 telescope with an aperture of 1.5 meters. The observations were carried out in the low-resolution mode (R=600) in the range of 3500-7500Å using a grating of 360 lines per mm, a dispersion of 4.25Å per pixel, in the first binning in the EMCCD mode with a gain of 5 and an exposure time of 10 seconds, the slit width of 9 arc seconds. The spectrum of asteroids was measured using the differential method: by comparing the fluxes from the object and a standard star. Solar analog stars (G-class stars) were used as standards. Processing and calculation of reflectance spectra, alongside the determination of taxonomic classification according to the Tholen and SMASSII systems, based on spectral morphology and selected spectral characteristics, were conducted for a sample of 19 asteroids, primarily consisting of Main Belt members (14). A comparison was made with the spectra of asteroids based on INASAN observations in 2013–2017 and the reflectivity spectra of asteroids obtained from Gaia (DR 3) observations, and their taxonomic types were determined without taking into account the albedo of the asteroids.

References

Board S.S. (2010) Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies. National Academies Press, 152. https://doi.org/10.17226/12842 DOI: https://doi.org/10.17226/12842

Binzel R.P. (2019) Small bodies looming large in planetary science. Nature Astronomy, 3(4), 282-283. https://doi.org/10.1038/s41550-019-0747-6 DOI: https://doi.org/10.1038/s41550-019-0747-6

DeMeo F.E., Carry B. (2014) Solar System evolution from compositional mapping of the asteroid belt. Nature, 505, 629-634. https://doi.org/10.48550/arXiv.1408.2787 DOI: https://doi.org/10.1038/nature12908

Clark B.E., Hapke B., Pieters C., Britt D. (2002) Asteroid Space Weathering and Regolith Evolution. Asteroids III, 585-599. Available at: https://www.researchgate.net/publication/253857329_Asteroid_Space_Weathering _and_Regolith_Evolution DOI: https://doi.org/10.2307/j.ctv1v7zdn4.44

Lupishko D., Karazin V.N. (2000) Physical properties of asteroids. Astronomical School’s Repor., 1(2). 63-77. https://doi.org/10.18372/2411-6602.01.2063 DOI: https://doi.org/10.18372/2411-6602.01.2063

Shepard M.K. (2005) A Long-Term Radar Survey of M-Class Asteroids. Bulletin of the American Astronomical Society, 37. 628. Available at: https://ui.adsabs.harvard.edu/abs/2005DPS....37.0707S/abstract

Hardersen P.S., Cloutis E.A., Reddy V., Mothe-Diniz T., Emery J.P. (2011). The M-/X-asteroid menagerie: Results of an NIR spectral survey of 45 main-belt asteroids. Meteoritics & Planetary Science, 46(12). 1910-1938. https://doi.org/10.1111/j.1945-5100.2011.01304.x DOI: https://doi.org/10.1111/j.1945-5100.2011.01304.x

De Pater, Imke; Lissauer, Jack Jonathan (2001). Planetary sciences. Cambridge University Press. 528. Available at: https://books.google.kz/books?id=RaJdy3_VINQC&printsec=frontcover&hl=ru&source=gbs_ ge_summary_r&cad=0#v=onepage&q&f=false

Ehrenfreund P., Irvine W.M., Owen T., Becker L., Jen Blank, Brucato J.R., Colangeli L., Derenne S., Dutrey A., Despois D., Lazcano A., Robert F. (2004). Astrobiology: Future Perspectives. Springer Science & Business. 159. Available at: https://www.amazon.ae/Astrobiology-Future-Perspectives-P-Ehrenfreund/dp/1402023049 DOI: https://doi.org/10.1007/1-4020-2305-7

McSween Jr, Harry Y. (1999). Meteorites and their Parent Planets. Cambridge University Press. 324. Available at: https://www.amazon.com/Meteorites-Parent-Planets-Harry-McSween/dp/0521587514

Busarev V.V., Shcherbina M.P., Barabanov S.I., Irsmambetova T.R., Kokhirova G.I., Khamroev U.Kh., Khamitov I.M., Bikmaev I.F., Gumerov R.I., Irtuganov E.N. & Mel’nikov S.S. (2019) Confirmation of the Sublimation Activity of the Primitive Main-Belt Asteroids 779 Nina, 704 Interamnia, and 145 Adeona, as well as its Probable Spectral Signs on 51 Nemausa and 65 Cybele. Solar System Research, 53. 261-277. https://doi.org/10.1134/ S0038094619040014 DOI: https://doi.org/10.1134/S0038094619040014

Gaia Collaboration: L. Galluccio, et al. (2023) Gaia Data Release 3: Reflectance spectra of Solar System small bodies. A&A, 674 (A35), 29. https://doi.org/10.1051/0004-6361/202243791] DOI: https://doi.org/10.1051/0004-6361/202243791

Pinilla-Alonso, Noem, de Le´on, J., Walsh, K. J., Campins, H., Lorenzi, V., Delbo, M., DeMeo, F., Licandro, J., Landsman, Z., Lucas, M. P., Al´ı-Lagoa, V., Burt, B. (2016) Portrait of the Polana-Eulalia Family Complex: Surface homogeneity revealed from Near-Infrared Spectroscopy. Icarus, 274:231-248. https://doi.org/10.1016/j.icarus.2016.03.022 DOI: https://doi.org/10.1016/j.icarus.2016.03.022

Cellino A., Ph. Bendjoya, M. Delbo, L. Galluccio, J. Gayon-Markt, P. Tanga, and E. F. Tedesco (2020) Ground-based visible spectroscopy of asteroids to support the development of an unsupervised Gaia asteroid taxonomy. A&A, 642. A80. https://doi.org/10.1051/0004-6361/202038246 DOI: https://doi.org/10.1051/0004-6361/202038246

de León, J. Licandro, M. Serra-Ricart, N. Pinilla-Alonso, H. Campins (2010) Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. A&A, 517. A23. https://doi.org/10.1051/0004-6361/200913852 DOI: https://doi.org/10.1051/0004-6361/200913852

Raḿırez I, R. Michel, R. Sefako, M. Tucci Maia, W. J. Schuster, F. van Wyk, J. Melendez, L. Casagrande, and B. V. Castilho (2012). The UBV(RI) Colors of the Sun. The Astrophysical Journal, 752, 5, 13. https://doi.org/10.1088/0004-637X/752/1/5 DOI: https://doi.org/10.1088/0004-637X/752/1/5

Tedesco E.F., Tholen D.J., Zellner B. (1982) The eight-color asteroid survey - Standard stars. AJ, 87(11). 1585-1592. Available at: https://adsabs.harvard.edu/full/1982AJ.....87.1585T DOI: https://doi.org/10.1086/113248

Farnham T. L., Schleicher D. G., A’Hearn M. F. (2000) The HB Narrowband Comet Filters: Standard Stars and Calibrations. Icarus, 147(1), 180-204. https://doi.org/10.1006/icar.2000.6420 DOI: https://doi.org/10.1006/icar.2000.6420

Tinaut-Ruano F., E. Tatsumi, P. Tanga, J. de León, M. Delbo, F. De Angeli, D. Morate , J. Licandro, and L. Galluccio (2023). Asteroids’ reflectance from Gaia DR3: Artificial reddening at near-UV wavelengths. A&A, 669, L14. https://doi.org/10.1051/0004-6361/202245134] DOI: https://doi.org/10.1051/0004-6361/202245134

Serebryanskiy A.V., Omarov Ch.T., Aimanova G.K., Krugov M.A., Akniyazov Ch.B. (2022). Spectral Observations of Geostationary Satellites. Eurasian Physical Technical Journal, 19(2). 93-100. https://doi.org/10.31489/2022No2/93-100 DOI: https://doi.org/10.31489/2022No2/93-100

Virtanen P., Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, etc., and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17(3), 261-272. https://doi.org/10.1038/s41592-019-0686-2 DOI: https://doi.org/10.1038/s41592-020-0772-5

Tholen D.J. Asteroid taxonomic classifications. (1989) IN: Asteroids II; Proceedings of the Conference, Tucson, AZ, Mar. 8-11, 1988 (A90-27001 10-91). Tucson, AZ, University of Arizona Press, 1139-1150. Available at: https://ui.adsabs.harvard.edu/abs/1989aste.conf.1139T/abstract

Shcherbina M.P., Busarev V.V., Barabanov S.I. (2019) Spectrophotometric Studies of Near-Earth and Main-Belt Asteroids. Moscow University Physics Bulletin, 74(6). 675–678. Available at: https://link.springer.com/article/10.3103/ S0027134919060237 DOI: https://doi.org/10.3103/S0027134919060237

Savelova A.A., Busarev, V.V., Shcherbina, M.P., Barabanov, S.I. (2022) Using "templates" of spectral types of asteroids to enhance the mineralogy of these bodies and detect the signs of sublimation-pyretic and solar activity. INASAN Science Reports, 7, 143-148. http://dx.doi.org/10.51194/INASAN.2022.7.2.008 [in Russian] DOI: https://doi.org/10.51194/INASAN.2022.7.2.008

Downloads

Published online

2025-06-30

How to Cite

Aimanova, G., Serebryanskiy, A., Shcherbina, M., & Krugov, M. (2025). SPECTROPHOTOMETRIC STUDIES OF ASTEROIDS I: REFLECTANCE SPECTRA. Eurasian Physical Technical Journal, 22(2 (52), 133–146. https://doi.org/10.31489/2025N2/133-146

Issue

Section

Physics and Astronomy

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

Loading...