ANNEALING-INDUCED MORPHOLOGICAL EVOLUTION OF IRON NANOCATALYSTS FOR CARBON NANOTUBE GROWTH
DOI:
https://doi.org/10.31489/2025N3/5-13Keywords:
Iron nanocatalysts, Carbon nanotube, Physical Vapor Deposition, Chemical Vapor Deposition, Raman spectroscopy, Atomic Force Microscopy, Scanning Electron MicroscopyAbstract
The synthesis of iron nanocatalysts on silicon substrates via the Electron Beam Physical Vapor Deposition method has garnered significant attention due to its catalytic uses. The influence of annealing temperature (500°C, 550°C, and 600°C) on the structural and morphological characteristics of Fe nanocatalysts and their use in the growth of carbon nanotubes via Chemical Vapor Deposition is investigated in this study. Atomic Force Microscopy and Scanning Electron Microscopy measurements reveal that an increase in the annealing temperature reduces the average nanocluster size, and annealing at 600°C yields nanoclusters with an average size of approximately 30 nm; hence, they are more effective as catalysts. Raman spectroscopy proved that carbon nanotube growth was only observed on the 600°C-annealed substrate, and it exhibits a high ID/IG ratio (<1), indicating high crystallinity and low defect concentration. The absence of Radial Breathing Mode peaks represents additional evidence that the synthesized carbon nanotubes are multi-walled. These findings indicate that nanocluster size and distribution must be controlled with high accuracy using Electron Beam Physical Vapor Deposition and thermal treatment in order to maximize Fe nanocatalysts for carbon nanotubes growth.
References
Vaz C.A.F., Piamonteze C., Kleibert A. (2018) Enhanced mobility of iron nanoparticles deposited onto a xenon-buffered silicon substrate. Journal of Magnetism and Magnetic Materials, 459, 2-6. https://doi.org/10.1016/J.JMMM.2018.02.021 DOI: https://doi.org/10.1016/j.jmmm.2018.02.021
Melchionna M., Fornasiero P., Cargnello M. (2017) Opportunities and Challenges in the Synthesis, Characterization, and Catalytic Properties of Controlled Nanostructures. Studies in Surface Science and Catalysis,177, 1-56.
https://doi.org/10.1016/B978-0-12-805090-3.00001-2 DOI: https://doi.org/10.1016/B978-0-12-805090-3.00001-2
Movchan B. A. (2016) Discrete nanosized metallic coatings produced by EB-PVD. Surface Engineering, 32, 4. https://doi.org/10.1179/1743294415Y.0000000092 DOI: https://doi.org/10.1179/1743294415Y.0000000092
Lehmann H.W., Frick K. (1988) Optimizing deposition parameters of electron beam evaporated TiO2 films. Applied Optics, 27, 4920-4924. https://doi.org/10.1364/AO.27.004920 DOI: https://doi.org/10.1364/AO.27.004920
Minea T.M., Point S., Gohier A., Granier A., Godon C., Alvarez F. (2005) Single chamber PVD/PECVD process for in situ control of the catalyst activity on carbon nanotubes growth. Surface and Coatings Technology, 200(1-4), 1101-1105. https://doi.org/10.1016/J.SURFCOAT.2005.01.053 DOI: https://doi.org/10.1016/j.surfcoat.2005.01.053
Sharapov I., Omarova G., Sadykova A., Seliverstova E. (2025) Properties of Ag/TiO2 AND Ag/SiO2 nanoparticles and their effect on the photocatalytic properties of a semiconductor nanocomposite. Eurasian Physical Technical Journal, 22(2 (52)), 25–32. https://doi.org/10.31489/2025N2/25-32 DOI: https://doi.org/10.31489/2025N2/25-32
Berdiev U., Khudaykulov I., Iskandarov S., Amirova A., Ashurov K. (2025) Influence of SiO2 Nanoparticles on the Characteristics of a Polyvinyl Alcohol-Based Proton Exchange Composite Membrane. East European Journal of Physics, (1), 265-271. https://doi.org/10.26565/2312-4334-2025-1-30 DOI: https://doi.org/10.26565/2312-4334-2025-1-30
Melchionna M., Beltram A., Stopin A., Montini T., Lodge R. W., Khlobystov A.N., . Fornasiero P. (2018) Magnetic shepherding of nanocatalysts through hierarchically-assembled Fe-filled CNTs hybrids. Applied Catalysis B: Environmental, 227, 356-365. https://doi.org/10.1016/j.apcatb.2018.01.049 DOI: https://doi.org/10.1016/j.apcatb.2018.01.049
Sharma P., Pavelyev V., Kumar S., Mishra P., Islam S.S., Tripathi N. (2020) Analysis on the synthesis of vertically aligned carbon nanotubes: growth mechanism and techniques. Journal of Materials Science: Materials in Electronics, 31(6), 4399-4443. Available at: https://link.springer.com/article/10.1007/s10854-020-03021-6 DOI: https://doi.org/10.1007/s10854-020-03021-6
Ju L., Chen Z., Fang L., Dong W., Zheng F., Shen M. (2011) Sol–gel synthesis and photo‐Fenton‐like catalytic activity of EuFeO3 nanoparticles. Journal of the American Ceramic Society, 94(10), 3418-3424. https://doi.org/10.1111/j.1551-2916.2011.04522.x DOI: https://doi.org/10.1111/j.1551-2916.2011.04522.x
Dai Z.R., Pan Z.W., Wang Z.L. (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation. Advanced Functional Materials, 13(1), 9-24. https://doi.org/10.1002/adfm.200390013 DOI: https://doi.org/10.1002/adfm.200390013
Bosso P., Del Sole R., Milella A., Mengucci P., Barucca G., Armenise V., & Palumbo F. (2023) Nanostructured iron oxide thin films deposited by RF sputtering as catalysts for the heterogeneous solar photo-Fenton reaction. Vacuum, 207, 111646. https://doi.org/10.1016/j.vacuum.2022.111646 DOI: https://doi.org/10.1016/j.vacuum.2022.111646
Zeng Xiaoliang, Yu Shuhui, Ye Lei, Li Mingyan, Pan Zhilong, Sun Rong, Xu J.B.. (2014) Encapsulating carbon nanotubes with SiO2: A strategy for applying them in polymer nanocomposites with high mechanical strength and electrical insulation. J. Mater. Chem. C., 3, 187-195. http://dx.doi.org/10.1039/C4TC01051E DOI: https://doi.org/10.1039/C4TC01051E
Zhang Q., Cheng G., Zheng R. (2018) The Internal Buckling Behavior Induced by Growth Self-restriction in Vertical Multi-walled Carbon Nanotube Arrays. MRS Advances, 3(45–46), 2815–2823. https://doi.org/10.1557/adv.2018.429 DOI: https://doi.org/10.1557/adv.2018.429
Jing L., Li H., Lin J., Tay R.Y., Tsang S.H., Teo E.H.T., Tok A.I.Y. (2018) Supercompressible coaxial carbon nanotube@ graphene arrays with invariant viscoelasticity over− 100 to 500 C in ambient air. ACS Applied Materials & Interfaces, 10(11), 9688-9695. Available at: https://pubs.acs.org/doi/abs/10.1021/acsami.8b01925 DOI: https://doi.org/10.1021/acsami.8b01925
Eres G., Rouleau C. M., Puretzky A. A., Geohegan D.B., Wang H. (2018) Cooperative behavior in the evolution of alignment and structure in vertically aligned carbon-nanotube arrays grown using chemical vapor deposition. Physical Review Applied, 10(2), 024010. https://doi.org/10.1103/PhysRevApplied.10.024010 DOI: https://doi.org/10.1103/PhysRevApplied.10.024010
Walsh P.J., Li H., Anaya de Parrodi C. (2007) A green chemistry approach to asymmetric catalysis: Solvent-free and highly concentrated reactions. ChemInform, 38(30), 112–118. https://doi.org/10.1002/chin.200736264 DOI: https://doi.org/10.1002/chin.200736264
Păun C., Obreja C., Comănescu F., Tucureanu V., Tutunaru O., Romaniţan C., Ionescu O. (2019). Epoxy nanocomposites based on MWCNT. Proceeding of the IEEE 2019 International Semiconductor Conference (CAS), 237 – 240. https://doi.org/10.1109/SMICND.2019.8923947 DOI: https://doi.org/10.1109/SMICND.2019.8923947
Paun C., Obreja C., Comanescu F., Tucureanu V., Tutunaru O., Romanitan C., & Paltanea G. (2021) Studies on structural MWCNT/epoxy nanocomposites for EMI shielding applications. Proceeding of the IOP Conference Series: Materials Science and Engineering, 1009, 1, 012046. https://doi.org/10.1088/1757-899X/1009/1/012046 DOI: https://doi.org/10.1088/1757-899X/1009/1/012046
Hu H., Xin J.H., Hu H., Wang X., Miao D., Liu Y. (2015) Synthesis and stabilization of metal nanocatalysts for reduction reactions–a review. Journal of materials chemistry A, 3(21), 11157-11182. https://doi.org/10.1039/C5TA00753D DOI: https://doi.org/10.1039/C5TA00753D
Rusevova K., Kopinke F.D., Georgi A. (2012) Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe (II)/Fe (III) ratio on catalytic performance. Journal of hazardous materials, 241, 433-440. https://doi.org/10.1016/j.jhazmat.2012.09.068 DOI: https://doi.org/10.1016/j.jhazmat.2012.09.068
Abdisaidov I., Khudaykulov Ilyos, Ashurov Kh. (2024) Low-temperature growth of carbon nanotubes using nickel catalyst. East European Journal of Physics., 355-358. https://doi.org/10.26565/2312-4334-2024-3-41 DOI: https://doi.org/10.26565/2312-4334-2024-3-41
Mohapatra M., Anand S. (2010) Synthesis and applications of nano-structured iron oxides/hydroxides–a review. International Journal of Engineering, Science and Technology, 2(8). https://doi.org/10.4314/ijest.v2i8.63846 DOI: https://doi.org/10.4314/ijest.v2i8.63846
Ali A., Zafar H., Zia M., ul Haq I., Phull A.R., Ali J. S., Hussain A. (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, science and applications, 49-67. https://doi.org/10.2147/NSA.S99986 DOI: https://doi.org/10.2147/NSA.S99986
Khan Y., Sadia H., Ali Shah S.Z., Khan M.N., Shah A.A., Ullah N., Khan M.I. (2022) Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts, 12(11), 1386. https://doi.org/10.3390/catal12111386 DOI: https://doi.org/10.3390/catal12111386
Campos E. A., Pinto D.V.B.S., Oliveira J. I. S. D., Mattos E.D.C., Dutra R.D.C.L. (2015) Synthesis, characterization and applications of iron oxide nanoparticles-a short review. Journal of Aerospace Technology and Management, 7(3), 267-276. https://doi.org/10.5028/jatm.v7i3.471 DOI: https://doi.org/10.5028/jatm.v7i3.471
Karakashov B., Mayne-L’Hermite M., Pinault M. (2022) Conducting interface for efficient growth of vertically aligned carbon nanotubes: Towards nano-engineered carbon composite. Nanomaterials, 12(13), 2300. https://doi.org/10.3390/nano12132300 DOI: https://doi.org/10.3390/nano12132300
Ashurov X., Adilov M., Ismatov A., Rakhimov A. (2025) Oxide layer growth on silicon substrates: effects of temperature and surface preparation. Uzbek Journal of Physics, 26(4). https://doi.org/10.52304/.v26i4.570 DOI: https://doi.org/10.52304/.v26i4.570
Miura S., Yoshihara Y., Asaka M., Hasegawa K., Sugime H., Ota A., Oshima H., Noda S. (2018) Millimeter-tall carbon nanotube arrays grown on aluminum substrates. Carbon, 130, 834-842. https://doi.org/10.1016/j.carbon.2018.01.075 DOI: https://doi.org/10.1016/j.carbon.2018.01.075
Downloads
Published online
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.