UNIVERSAL MODULAR ONBOARD CONTROL COMPLEX OBCARM G2 NANO FOR NANO-CLASS SPACECRAFT

UNIVERSAL MODULAR ONBOARD CONTROL COMPLEX OBCARM G2 NANO FOR NANO-CLASS SPACECRAFT

Authors

DOI:

https://doi.org/10.31489/2025N3/101-110

Keywords:

on-board control complex, field-programmable gate array, processor, interface module, CubeSat

Abstract

Universal modular onboard control system OBCARM G2 NANO has been developed for 3U-12U nano-class spacecraft designed for communications, Earth remote sensing, or the Internet of Things. OBCARM G2 NANO consists of interface and processor modules on separate printed circuit boards. The Zynq Ultra scale+ SoC-based processor mod-ule provides ARM TMS470-based module telemetry control support and necessary peripherals, including 500 MB DDR4 RAM for the CPU, 125 MB RAM for the programmable logic gate array field-programmable gate array 125 MB QSPI Flash for flight software storing, and 128 GB eMMC Flash as ROM. Interface module contains onboard control system modules power lines, interfaces of the control system and payload data transmitter and receiver, as well as drivers that provide con-version and buffering of payload data. The OBCARM G2 NANO uses QNX RTOS for flight software, and a high-performance AXI bus for interaction between the processor system and field-programmable gate array. CAN bus is used to ensure spacecraft subsystems operation in a single network. The dimensions of the OBCARM G2 NANO mechanical equipment, including a set of temperature monitoring sensors and a thermal bridge for removing excess heat from hot spots, are 95 mm x 95 mm x 35 mm.

References

Brycetech (2025) Smallsat by the numbers. Available at: https://brycetech.com/reports/report-documents/smallsats-2025/

Kulu E. (2022) Nanosatellite Launch Forecasts 2022 - Track Record and Latest Prediction. Available at: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=5166&context=smallsat

Alipbayev K., Sarsenbayev Y., Mussina А., Nurgizat Y. (2022) Development of Onboard Control System Architecture for Nanosatellites. Eurasian Physical Technical Journal, 19, 4(42), 58 – 66. https://doi.org/10.31489/2022No4/58-66. DOI: https://doi.org/10.31489/2022No4/58-66

Sarsenbaev Y.Y., Mussina A.A., Ismailov U.M., Bychkov A.N. (2021) Patent for Utility Model, Republic of Kazakhstan № 6912, 27.12.2021.

Kulu E. (2024) Nanosats Database. Available at: https://www.nanosats.eu/

Furano G., Menicucci A. (2017) Roadmap for On-Board Processing and Data Handling Systems in Space. Springer eBooks (pp. 253–281). https://doi.org/10.1007/978-3-319-54422-9_10 DOI: https://doi.org/10.1007/978-3-319-54422-9_10

Space Micro. Proton-600k Multi-Core Computer (2024). Available at: https://www.spacemicro.com/ products/digital-systems.html

KP Labs. Antelope (2024). Available at: https://kplabs.space/antelope/

Space Inventor. Z7000-P4 (2024). Available at: https://space-inventor.com/modules/z7000

Bogatin E. (2020) Bogatin’s Practical Guide to transmission line design and characterization for signal Integrity applications. Available at: https://ieeexplore.ieee.org/document/9118790/

Xilinx (2018) UltraScale Architecture Soft Error Mitigation Controller v3.1. PG187, San Jose, CA, USA, Available at: https://docs.amd.com/r/en-US/pg187-ultrascale-sem

Tambara L.A., Kastensmidt F.L., Medina N.H., Added N., Aguiar V.a.P., Aguirre F., Macchione E.L.A., Silveira M.a.G. (2015) Heavy Ions Induced Single Event Upsets Testing of the 28 nm Xilinx Zynq-7000 All Programmable SoC. IEEE Radiation Effects Data Workshop (REDW), 1–6. https://doi.org/10.1109/redw.2015.7336716 DOI: https://doi.org/10.1109/REDW.2015.7336716

Perez A., Otero A., De La Torre E. (2018) Performance Analysis of SEE Mitigation Techniques on Zynq Ultrascale + Hardened Processing Fabrics. Proceeding of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 51–58. https://doi.org/10.1109/ahs.2018.8541490 DOI: https://doi.org/10.1109/AHS.2018.8541490

Anderson J.D., Leavitt J.C., Wirthlin M.J. (2018) Neutron Radiation Beam Results for the Xilinx UltraScale+ MPSoC. IEEE Radiation Effects Data Workshop (REDW), 1–7. https://doi.org/10.1109/nsrec.2018.8584297 DOI: https://doi.org/10.1109/NSREC.2018.8584297

Larouche B.P. (2008) Design, simulation, and testing of the structural separation system for the CanX-3 CanX-4/-5 nanosatellite missions. Toronto. Available at: http://hdl.handle.net/1807/119907

Brewer C., Franconi N., Ripley R., Geist A., Wise T., Sabogal S., Crum G., Heyward S., Wilson C. (2020) NASA SpaceCube Intelligent Multi-Purpose system for enabling remote sensing, communication, and navigation in mission architectures. Available at: https://ntrs.nasa.gov/api/citations/20205005819/downloads/SSC20-VI-07-SC_Mini_Submitted.pdf

Raje S.M., Goel A., Sharma S., Aggarwal K., Mantri D., Kumar T. (2019) Development of on board computer for a nanosatellite. Proceeding of the 68th International Astronautical Congress (IAC). https://doi.org/10.48550/arxiv.1911.11225

AAC Clyde Space (2025) SIRIUS-OBC-LEON3FT. Available at: https://www.aac-clyde.space/what-we-do/space-products-components/command-data-handling/smallsat-sirius-obc

GOMSpace (2025) Versatile Onboard Computer for Cube, Nano and Microsat missions. Available at: https://gomspace.com/shop/subsystems/command-and-data-handling/nanomind-a3200.aspx

Downloads

Published online

2025-09-30

How to Cite

Sarsenbayev, Y., Ostretsov, K., Baktybekov, K., Mussina, A., & Yskak, A. (2025). UNIVERSAL MODULAR ONBOARD CONTROL COMPLEX OBCARM G2 NANO FOR NANO-CLASS SPACECRAFT . Eurasian Physical Technical Journal, 22(3 (53), 101–110. https://doi.org/10.31489/2025N3/101-110

Issue

Section

Engineering

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

Loading...