DEVELOPMENT AND OPTIMIZATION OF OPTICAL PAYLOAD FOR NANOSATELLITES WITH STRICT CONSTRAINTS

DEVELOPMENT AND OPTIMIZATION OF OPTICAL PAYLOAD FOR NANOSATELLITES WITH STRICT CONSTRAINTS

Authors

DOI:

https://doi.org/10.31489/2025N3/111-119

Keywords:

Earth remote sensing, modulation transfer function (MTF), payload, nanosatellite, spacecraft

Abstract

This article presents the design and optimization of a compact, high-performance optical payload for Earth observation nanosatellites. The payload is based on a Ritchey-Chrétien telescope with corrective lenses, providing a ground sample distance (GSD) of 6 meters per pixel from a 600 km orbit while meeting strict constraints on mass, dimensions, power consumption, and operational conditions in the space environment. The design process, conducted using Zemax 2024 software, focuses on achieving high image quality within the limitations typical for a 12U CubeSat. The results confirm the feasibility of the project, ensuring a modulation transfer function value exceeding 0.26 at the Nyquist frequency. Several key performance indicators were evaluated, including the system modulation transfer function. Once the required parameters were achieved, a lens corrector system was added and the field angles were optimized. BK7 and Fused Silica were selected as lens materials. The simulation results confirm that the developed optical payload meets the requirements for use in space conditions, including resistance to vibration loads during launch vehicle launch.

References

Simon Jones, Karin Reinke (2009) Innovations in remote sensing and photogrammetry. Springer Science & Business Media, 468. https://doi.org/10.1007/978-3-540-93962-7 DOI: https://doi.org/10.1007/978-3-540-93962-7

Li C.R., Tang L.L., Ma L.L., Zhou Y.S., Gao C.X., Wang N., Zhu X.H. (2015) Comprehensive calibration and validation site for information remote sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 1233-1240. https://doi.org/10.5194/isprsarchives-XL-7-W3-1233-2015 DOI: https://doi.org/10.5194/isprsarchives-XL-7-W3-1233-2015

Xing K., Cao S. X., Yue C.Y., Zhou N. (2017) Optimization design method of optical remote sensor based on imaging chain simulation. MATEC Web of Conf., 114, 04013. https://doi.org/10.1051/matecconf/201711404013 DOI: https://doi.org/10.1051/matecconf/201711404013

Kramer H. J. (2002) Observation of the Earth and Its Environment: Survey of Missions and Sensors, Heidelberg, Berlin, New York Berlin: Springer, 1509. https://doi.org/10.1007/978-3-642-97678-0 DOI: https://doi.org/10.1007/978-3-642-97678-0

Musabayev T.A., Moldabekov M.M., Nurguzhin M.R., Dyussenev S.T., Murushkin S.A., Albazarov B.S., Ten V.V. (2013) Earth observation system of the Republic of Kazkahstan. Proceedings of the Intern. Astronautical Congress, IAC, 2738-2740. Available at: https://www.eoportal.org/satellite-missions/kazeosat-2#eop-quick-facts-section

Fiete R.D., Tantalo T. (2001) Comparison of SNR image quality metrics for remote sensing systems. Optical Engineering, 40(4), 574-585. https://doi.org/10.1117/1.1355251 DOI: https://doi.org/10.1117/1.1355251

Citroen M., Raz G., Berger M. (2008) Noise equivalent reflectance difference (NERD) vs. spatial resolution (SR) as a good measure for system performances. Remote Sensing System Engineering, 7087, 66-76. https://doi.org/10.1117/12.794632 DOI: https://doi.org/10.1117/12.794632

Attia W.A., Eltohamy F., Bazan T.M. (2020) Design of very high resolution satellite telescopes part II: comprehensive performance assessment. IEEE Transactions on Aerospace and Electronic Systems, 56(5), 4049-4055. https://doi.org/10.1109/TAES.2020.2991622 DOI: https://doi.org/10.1109/TAES.2020.2991622

Wong S. (2014) Predicting image quality of surveillance sensors. Defence Research and Development Canada, 38. Available at: https://publications.gc.ca/site/archivee-archived.html?url=https://publications.gc.ca /collections/collection_2015/rddc-drdc/D68-2-97-2014-eng.pdf

Mengali A., Ginesi A., D'Addio, S. (2020) Computer-aided payload architecture optimization for HTS satellites. Proceedings of the 10th Advanced Satellite Multimedia Systems Conference and the 16th Signal Processing for Space Communications Workshop (ASMS/SPSC), 1-8. https://doi.org/10.1109/ASMS/SPSC48805.2020.9268888 DOI: https://doi.org/10.1109/ASMS/SPSC48805.2020.9268888

Jafarsalehi A., Asl E. P., Mirshams M. (2014) Satellite imaging payload design optimization. Aerospace Science and Technology, 39, 145-152. https://doi.org/10.1016/j.ast.2014.09.003 DOI: https://doi.org/10.1016/j.ast.2014.09.003

Abolghasemi M., Abbasi-Moghadam D. (2012) Design and performance evaluation of the imaging payload for a remote sensing satellite. Optics & Laser Technology, 44(8), 2418 - 2426. https://doi.org/10.1016/j.optlastec.2012.04.006 DOI: https://doi.org/10.1016/j.optlastec.2012.04.006

Şanlı A., Erkeç T.Y. (2024) Design and Analysis of Optical Telescope Subsystem. Journal of Aeronautics and Space Technologies, 17(Special Issue), 92-101. Available at: jast.hho.msu.edu.tr

Jallad A.H., Marpu P., Abdul Aziz Z., Al Marar A., Awad M. (2019) MeznSat—A 3U CubeSat for monitoring greenhouse gases using short wave infra-red spectrometry: Mission concept and analysis. Aerospace, 6(11), 118. https://doi.org/10.3390/aerospace6110118 DOI: https://doi.org/10.3390/aerospace6110118

Dunwoody R., Reilly J., Murphy D., Doyle M., Thompson J., Finneran G., McBreen S. (2022) Thermal vacuum test campaign of the EIRSAT-1 engineering qualification model. Aerospace, 9(2), 99. https://doi.org/10.3390/aerospace9020099 DOI: https://doi.org/10.3390/aerospace9020099

Jung J., Sy N. V., Lee D., Joe S., Hwang J., Kim B. (2020) A single motor-driven focusing mechanism with flexure hinges for small satellite optical systems. Applied Sciences, 10(20), 7087. 10. https://doi.org/10.3390/app10207087 DOI: https://doi.org/10.3390/app10207087

Azami M.H.B., Orger N.C., Schulz V.H., Oshiro T., Alarcon J.R.C., Maskey A., KITSUNE Team Members. (2022) Design and environmental testing of imaging payload for a 6 U CubeSat at low Earth orbit: KITSUNE mission. Frontiers in Space Technologies, 3, 1000219. https://doi.org/10.3389/frspt.2022.1000219 DOI: https://doi.org/10.3389/frspt.2022.1000219

Guentchev G. N., Bayer M.M., Li X., Boyraz O. (2021) Mechanical design and thermal analysis of a 12U CubeSat MTCW lidar based optical measurement system for littoral ocean dynamics. CubeSats and SmallSats for Remote Sensing V ,11832, 71-98. https://doi.org/10.1117/12.2597709 DOI: https://doi.org/10.1117/12.2597709

Geismayra L., Schummera F., Langer M., Binder M., Schlick G. (2020). Thermo-Mechanical Design and Analysis of a Multispectral Imaging Payload using Phase Change Material. Proceeding of the Intern. Astronautical Congress (IAC) – The CyberSpace Edition, 1-17, IAC-20-C2.5.13 Available at: https://www.researchgate.net/publication/348603407

Woodruff R.A., Hull T., Heap S.R., Danchi W., Kendrick S.E., Purves L. (2017) Optical design for CETUS: a wide-field 1.5 m aperture UV payload being studied for a NASA probe class mission study. Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems, 10401, 400 - 408. https://doi.org/10.48550/arXiv.1912.06763 DOI: https://doi.org/10.1117/1.JATIS.5.2.024006

Contreras J.W., Lightsey P.A. (2004). Optical design and analysis of the James Webb Space Telescope: optical telescope element. Novel Optical Systems Design and Optimization VII 5524, 30 - 41. https://doi.org/10.1117/12.559871 DOI: https://doi.org/10.1117/12.559871

Devilliers C., Du Jeu C., Costes V., Suau A., Girault N., Cornillon L. (2017) New design and new challenge for space large ultralightweight and stable Zerodur mirror for future high resolution observation instruments. Proceedings of the Intern. Conf. on Space Optics—ICSO 2014, 10563, 442-450. https://doi.org/10.1117/12.2304187 DOI: https://doi.org/10.1117/12.2304187

Wang X., Guo C., Liu Y., Chen J., Wang Y., Hu Y. (2019) Design and manufacture of 1.3 meter large caliber light-weighted Space optical components. Proceedings of the Intern. Conf. on Space Optics—ICSO 2018, 11180, 304-321. https://doi.org/10.1117/12.2535947 DOI: https://doi.org/10.1117/12.2535947

Published online

2025-09-30

How to Cite

Zhumazhanov, B., Zhetpisbayeva, A., Kulakayeva, A., Makhanov, K., & Zhumazhanov, B. (2025). DEVELOPMENT AND OPTIMIZATION OF OPTICAL PAYLOAD FOR NANOSATELLITES WITH STRICT CONSTRAINTS. Eurasian Physical Technical Journal, 22(3 (53), 111–119. https://doi.org/10.31489/2025N3/111-119

Issue

Section

Engineering

Most read articles by the same author(s)

Loading...