"NUCLEAR STRUCTURE OF THE HEAVIEST BORON ISOTOPE "
DOI:
https://doi.org/10.31489/2022No1/113-118Keywords:
Halo-nuclei, 19B, Microscopic cluster model, neutron-halo structure, Wood-Saxon equation.Abstract
The two-neutron Halo of 19-Boronhas been investigated within this work. This investigation used the Microscopic Cluster Model (MCM). The main properties of Halo nuclei such as binding energy, radius, and deformation of the core have been calculated in this study. The 19B has been defined in the shape of core-n-n. The 17B is the core of the system. The feature of the three-body system depended on a structure and a deformation of the core. The core of 17B hasn't been considered as an inert core but has some degree of freedom. This degree has a high influence on the structure of a three-body system. So we used the Microscopic Cluster Model (MCM). The main aim of this study is to expand using cluster model in a new version which is Microscopic Cluster Model.
References
"1 Jansen G. et al. Ab Initio Coupled-Cluster Effective Interactions for the Shell Model: Application to Neutron-Rich Oxygen and Carbon Isotopes. Phys. Rev. Lett. 2014, Vol. 113, No. (14), pp. 142502-142507.
Orr N. A. Exploring the Structure of the Most Neutron-rich Boron and Carbon Isotopes. EPJ Web Conf. 2016, Vol. 113, No. (06011), pp. 06011-p.1-06011-p.6.
Tanihata I. et al. Measurements of Interaction Cross Sections and Nuclear Radii in the Light p-Shell Region. Phys. Rev. Lett. 1985, Vol. 55, No. (24), pp. 2676-2679.
Suzuki T., Kanungo R., Bochkarev O., et al. Nuclear radii of 17,19B and 14Be. Nuclear Physics A. 1999, Vol. 658, No. (4), pp. 313-326.
Cook K.J., et al. Halo Structure of the Neutron-Dripline Nucleus19B. Physical review letters. 2020, Vol. 124, No. (21), pp. 212503-1 - 212503-7.
Meng W., Audi G., Kondev F.G., et al. The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chinese Physics C. 2017, Vo. 41, No. (3), pp. 030003-1 - 030003-442.
Kanada Y., Horiuchi H. Structure of Light Unstable Nuclei Studied with Antisymmetrized Molecular Dynamics. Prog. Theor. Phys. Suppl. 2001, Vol.142, pp.205-263.
Spyrou A., Baumann T., Bazin D. First evidence for a virtual 18B ground state. Physics Letters B. 2010, Vol. 683, No. 2-3, pp. 129-133.
Zhukov M.V., Danilin B.V., Edorov D. V. Bound state properties of Borromean halo nuclei: 6He and 11Li. Physics Reports. 1993, Vol. 231, No. (4), pp. 151-199.
Gaudefroy L., Mittig W.W., Orr N. . Direct Mass Measurements of 19B, 22C, 29F, 31Ne, 34Na and Other Light Exotic Nuclei. Phys. Rev. Lett. 2012, Vol. 109, No. (20), pp. 202503-1 – 202503-5.
Hwash W.S. Yahaya R., Radiman S. Nuclear structure of14Be nucleus. J. of the Korean Phys. Soc. 2012, Vol. 61, No.1, pp. 27-32.
Hwash W.S. Yahaya R., Radiman S. Structure of two-neutron Halo nuclei, 11Li. International Journal of Modern Physics E. 2012, Vol. 21, No. (7), pp. 1250066_1- 1250066_13.
Hwash W.S., Yahaya R., Radiman S. Effect of core deformation on 17B halo nucleus. Physics of Atomic Nuclei. 2014, Vol. 77, No.(3), pp. 275–281.
Nunes F. M. Christley J.A., Thompson I. J., et al. Core excitation in three-body systems: Application to 12Be. Nuclear Physics A. 1996, Vol. 609, No. (1), pp.43-73.
Tarutina T., Thompson I. J., Tostevin J.A. Study of 14Be with core excitation. Nuclear Physics A. 2004, Vol. 733, No. 1-2, pp. 53-66.
Hwash W.S. Study of the two-proton halo nucleus 17Ne. International Journal of Modern Physics E. 2016, Vol. 25, No.12, pp. 1650105-1- 1650105-11.
Hwash W.S. Lightest and heaviest two-neutron halo nuclei, 6He and 22C. Turkish Journal of Physics. 2017, Vol. 41, pp. 151 – 159.
Hornyak W.E. Nuclear Structure Book. Maryland: Academic Press. 1975, 355 p.
"